1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
// Copyright 2019-2022 PureStake Inc.
// This file is part Utils package, originally developed by PureStake

// Utils is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// Utils is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with Utils.  If not, see <http://www.gnu.org/licenses/>.

//pub mod xcm;

use crate::{revert, EvmResult};
use core::{any::type_name, ops::Range};
use impl_trait_for_tuples::impl_for_tuples;
use sp_core::{H160, H256, U256};
use sp_std::{borrow::ToOwned, convert::TryInto, vec, vec::Vec};

/// The `address` type of Solidity.
/// H160 could represent 2 types of data (bytes20 and address) that are not encoded the same way.
/// To avoid issues writing H160 is thus not supported.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct Address(pub H160);

impl From<H160> for Address {
    fn from(a: H160) -> Address {
        Address(a)
    }
}

impl From<Address> for H160 {
    fn from(a: Address) -> H160 {
        a.0
    }
}

/// The `bytes`/`string` type of Solidity.
/// It is different from `Vec<u8>` which will be serialized with padding for each `u8` element
/// of the array, while `Bytes` is tightly packed.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Bytes(pub Vec<u8>);

impl Bytes {
    /// Interpret as `bytes`.
    pub fn as_bytes(&self) -> &[u8] {
        &self.0
    }

    /// Interpret as `string`.
    /// Can fail if the string is not valid UTF8.
    pub fn as_str(&self) -> Result<&str, sp_std::str::Utf8Error> {
        sp_std::str::from_utf8(&self.0)
    }
}

impl From<&[u8]> for Bytes {
    fn from(a: &[u8]) -> Self {
        Self(a.to_owned())
    }
}

impl From<&str> for Bytes {
    fn from(a: &str) -> Self {
        a.as_bytes().into()
    }
}

impl Into<Vec<u8>> for Bytes {
    fn into(self) -> Vec<u8> {
        self.0
    }
}

/// Wrapper around an EVM input slice, helping to parse it.
/// Provide functions to parse common types.
#[derive(Clone, Copy, Debug)]
pub struct EvmDataReader<'a> {
    input: &'a [u8],
    cursor: usize,
}

impl<'a> EvmDataReader<'a> {
    /// Create a new input parser.
    pub fn new(input: &'a [u8]) -> Self {
        Self { input, cursor: 0 }
    }

    /// Create a new input parser from a selector-initial input.
    pub fn read_selector<T>(input: &'a [u8]) -> EvmResult<T>
    where
        T: num_enum::TryFromPrimitive<Primitive = u32>,
    {
        if input.len() < 4 {
            return Err(revert("tried to parse selector out of bounds"))
        }

        let mut buffer = [0u8; 4];
        buffer.copy_from_slice(&input[0..4]);
        let selector = T::try_from_primitive(u32::from_be_bytes(buffer)).map_err(|_| {
            log::trace!(
                target: "precompile-utils",
                "Failed to match function selector for {}",
                type_name::<T>()
            );
            revert("unknown selector")
        })?;

        Ok(selector)
    }

    /// Create a new input parser from a selector-initial input.
    pub fn new_skip_selector(input: &'a [u8]) -> EvmResult<Self> {
        if input.len() < 4 {
            return Err(revert("input is too short"))
        }

        Ok(Self::new(&input[4..]))
    }

    /// Check the input has at least the correct amount of arguments before the end (32 bytes
    /// values).
    pub fn expect_arguments(&self, args: usize) -> EvmResult {
        if self.input.len() >= self.cursor + args * 32 {
            Ok(())
        } else {
            Err(revert("input doesn't match expected length"))
        }
    }

    /// Read data from the input.
    pub fn read<T: EvmData>(&mut self) -> EvmResult<T> {
        T::read(self)
    }

    /// Read raw bytes from the input.
    /// Doesn't handle any alignment checks, prefer using `read` instead of possible.
    /// Returns an error if trying to parse out of bounds.
    pub fn read_raw_bytes(&mut self, len: usize) -> EvmResult<&[u8]> {
        let range = self.move_cursor(len)?;

        let data = self
            .input
            .get(range)
            .ok_or_else(|| revert("tried to parse raw bytes out of bounds"))?;

        Ok(data)
    }

    /// Reads a pointer, returning a reader targetting the pointed location.
    pub fn read_pointer(&mut self) -> EvmResult<Self> {
        let offset: usize = self
            .read::<U256>()
            .map_err(|_| revert("tried to parse array offset out of bounds"))?
            .try_into()
            .map_err(|_| revert("array offset is too large"))?;

        if offset >= self.input.len() {
            return Err(revert("pointer points out of bounds"))
        }

        Ok(Self {
            input: &self.input[offset..],
            cursor: 0,
        })
    }

    /// Read remaining bytes
    pub fn read_till_end(&mut self) -> EvmResult<&[u8]> {
        let range = self.move_cursor(self.input.len() - self.cursor)?;

        let data = self
            .input
            .get(range)
            .ok_or_else(|| revert("tried to parse raw bytes out of bounds"))?;

        Ok(data)
    }

    /// Move the reading cursor with provided length, and return a range from the previous cursor
    /// location to the new one.
    /// Checks cursor overflows.
    fn move_cursor(&mut self, len: usize) -> EvmResult<Range<usize>> {
        let start = self.cursor;
        let end = self
            .cursor
            .checked_add(len)
            .ok_or_else(|| revert("data reading cursor overflow"))?;

        self.cursor = end;

        Ok(start..end)
    }
}

/// Help build an EVM input/output data.
///
/// Functions takes `self` to allow chaining all calls like
/// `EvmDataWriter::new().write(...).write(...).build()`.
/// While it could be more ergonomic to take &mut self, this would
/// prevent to have a `build` function that don't clone the output.
#[derive(Clone, Debug)]
pub struct EvmDataWriter {
    pub(crate) data: Vec<u8>,
    offset_data: Vec<OffsetDatum>,
    selector: Option<u32>,
}

#[derive(Clone, Debug)]
struct OffsetDatum {
    // Offset location in the container data.
    offset_position: usize,
    // Data pointed by the offset that must be inserted at the end of container data.
    data: Vec<u8>,
    // Inside of arrays, the offset is not from the start of array data (length), but from the start
    // of the item. This shift allow to correct this.
    offset_shift: usize,
}

impl EvmDataWriter {
    /// Creates a new empty output builder (without selector).
    pub fn new() -> Self {
        Self {
            data: vec![],
            offset_data: vec![],
            selector: None,
        }
    }

    /// Creates a new empty output builder with provided selector.
    /// Selector will only be appended before the data when calling
    /// `build` to not mess with the offsets.
    pub fn new_with_selector(selector: impl Into<u32>) -> Self {
        Self {
            data: vec![],
            offset_data: vec![],
            selector: Some(selector.into()),
        }
    }

    /// Return the built data.
    pub fn build(mut self) -> Vec<u8> {
        Self::bake_offsets(&mut self.data, self.offset_data);

        if let Some(selector) = self.selector {
            let mut output = selector.to_be_bytes().to_vec();
            output.append(&mut self.data);
            output
        } else {
            self.data
        }
    }

    /// Add offseted data at the end of this writer's data, updating the offsets.
    fn bake_offsets(output: &mut Vec<u8>, offsets: Vec<OffsetDatum>) {
        for mut offset_datum in offsets {
            let offset_position = offset_datum.offset_position;
            let offset_position_end = offset_position + 32;

            // The offset is the distance between the start of the data and the
            // start of the pointed data (start of a struct, length of an array).
            // Offsets in inner data are relative to the start of their respective "container".
            // However in arrays the "container" is actually the item itself instead of the whole
            // array, which is corrected by `offset_shift`.
            let free_space_offset = output.len() - offset_datum.offset_shift;

            // Override dummy offset to the offset it will be in the final output.
            U256::from(free_space_offset)
                .to_big_endian(&mut output[offset_position..offset_position_end]);

            // Append this data at the end of the current output.
            output.append(&mut offset_datum.data);
        }
    }

    /// Write arbitrary bytes.
    /// Doesn't handle any alignement checks, prefer using `write` instead if possible.
    fn write_raw_bytes(mut self, value: &[u8]) -> Self {
        self.data.extend_from_slice(value);
        self
    }

    /// Write data of requested type.
    pub fn write<T: EvmData>(mut self, value: T) -> Self {
        T::write(&mut self, value);
        self
    }

    /// Writes a pointer to given data.
    /// The data will be appended when calling `build`.
    /// Initially write a dummy value as offset in this writer's data, which will be replaced by
    /// the correct offset once the pointed data is appended.
    ///
    /// Takes `&mut self` since its goal is to be used inside `EvmData` impl and not in chains.
    pub fn write_pointer(&mut self, data: Vec<u8>) {
        let offset_position = self.data.len();
        H256::write(self, H256::repeat_byte(0xff));

        self.offset_data.push(OffsetDatum {
            offset_position,
            data,
            offset_shift: 0,
        });
    }
}

impl Default for EvmDataWriter {
    fn default() -> Self {
        Self::new()
    }
}

/// Data that can be converted from and to EVM data types.
pub trait EvmData: Sized {
    fn read(reader: &mut EvmDataReader) -> EvmResult<Self>;
    fn write(writer: &mut EvmDataWriter, value: Self);
    fn has_static_size() -> bool;
}

#[impl_for_tuples(1, 18)]
impl EvmData for Tuple {
    fn has_static_size() -> bool {
        for_tuples!(#( Tuple::has_static_size() )&*)
    }

    fn read(reader: &mut EvmDataReader) -> EvmResult<Self> {
        if !Self::has_static_size() {
            let reader = &mut reader.read_pointer()?;
            Ok(for_tuples!( ( #( reader.read::<Tuple>()? ),* ) ))
        } else {
            Ok(for_tuples!( ( #( reader.read::<Tuple>()? ),* ) ))
        }
    }

    fn write(writer: &mut EvmDataWriter, value: Self) {
        if !Self::has_static_size() {
            let mut inner_writer = EvmDataWriter::new();
            for_tuples!( #( Tuple::write(&mut inner_writer, value.Tuple); )* );
            writer.write_pointer(inner_writer.build());
        } else {
            for_tuples!( #( Tuple::write(writer, value.Tuple); )* );
        }
    }
}

impl EvmData for H256 {
    fn read(reader: &mut EvmDataReader) -> EvmResult<Self> {
        let range = reader.move_cursor(32)?;

        let data = reader
            .input
            .get(range)
            .ok_or_else(|| revert("tried to parse H256 out of bounds"))?;

        Ok(H256::from_slice(data))
    }

    fn write(writer: &mut EvmDataWriter, value: Self) {
        writer.data.extend_from_slice(value.as_bytes());
    }

    fn has_static_size() -> bool {
        true
    }
}

impl EvmData for Address {
    fn read(reader: &mut EvmDataReader) -> EvmResult<Self> {
        let range = reader.move_cursor(32)?;

        let data = reader
            .input
            .get(range)
            .ok_or_else(|| revert("tried to parse H160 out of bounds"))?;

        Ok(H160::from_slice(&data[12..32]).into())
    }

    fn write(writer: &mut EvmDataWriter, value: Self) {
        H256::write(writer, value.0.into());
    }

    fn has_static_size() -> bool {
        true
    }
}

impl EvmData for U256 {
    fn read(reader: &mut EvmDataReader) -> EvmResult<Self> {
        let range = reader.move_cursor(32)?;

        let data = reader
            .input
            .get(range)
            .ok_or_else(|| revert("tried to parse U256 out of bounds"))?;

        Ok(U256::from_big_endian(data))
    }

    fn write(writer: &mut EvmDataWriter, value: Self) {
        let mut buffer = [0u8; 32];
        value.to_big_endian(&mut buffer);
        writer.data.extend_from_slice(&buffer);
    }

    fn has_static_size() -> bool {
        true
    }
}

macro_rules! impl_evmdata_for_uints {
	($($uint:ty, )*) => {
		$(
			impl EvmData for $uint {
				fn read(reader: &mut EvmDataReader) -> EvmResult<Self> {
					let value256: U256 = reader.read()?;

                    let error_msg = "Value Too Big For Type";
					value256
						.try_into()
						.map_err(|_| revert(error_msg.as_bytes()))
				}

				fn write(writer: &mut EvmDataWriter, value: Self) {
					U256::write(writer, value.into());
				}

				fn has_static_size() -> bool {
					true
				}
			}
		)*
	};
}

impl_evmdata_for_uints!(u8, u16, u32, u64, u128,);

impl EvmData for bool {
    fn read(reader: &mut EvmDataReader) -> EvmResult<Self> {
        let h256 = H256::read(reader).map_err(|_| revert("tried to parse bool out of bounds"))?;

        Ok(!h256.is_zero())
    }

    fn write(writer: &mut EvmDataWriter, value: Self) {
        let mut buffer = [0u8; 32];
        if value {
            buffer[31] = 1;
        }

        writer.data.extend_from_slice(&buffer);
    }

    fn has_static_size() -> bool {
        true
    }
}

impl<T: EvmData> EvmData for Vec<T> {
    fn read(reader: &mut EvmDataReader) -> EvmResult<Self> {
        let mut inner_reader = reader.read_pointer()?;

        let array_size: usize = inner_reader
            .read::<U256>()
            .map_err(|_| revert("tried to parse array length out of bounds"))?
            .try_into()
            .map_err(|_| revert("array length is too large"))?;

        let mut array = vec![];

        let mut item_reader = EvmDataReader {
            input: inner_reader
                .input
                .get(32..)
                .ok_or_else(|| revert("try to read array items out of bound"))?,
            cursor: 0,
        };

        for _ in 0..array_size {
            array.push(item_reader.read()?);
        }

        Ok(array)
    }

    fn write(writer: &mut EvmDataWriter, value: Self) {
        let mut inner_writer = EvmDataWriter::new().write(U256::from(value.len()));

        for inner in value {
            // Any offset in items are relative to the start of the item instead of the
            // start of the array. However if there is offseted data it must but appended after
            // all items (offsets) are written. We thus need to rely on `compute_offsets` to do
            // that, and must store a "shift" to correct the offsets.
            let shift = inner_writer.data.len();
            let item_writer = EvmDataWriter::new().write(inner);

            inner_writer = inner_writer.write_raw_bytes(&item_writer.data);
            for mut offset_datum in item_writer.offset_data {
                offset_datum.offset_shift += 32;
                offset_datum.offset_position += shift;
                inner_writer.offset_data.push(offset_datum);
            }
        }

        writer.write_pointer(inner_writer.build());
    }

    fn has_static_size() -> bool {
        false
    }
}

impl EvmData for Bytes {
    fn read(reader: &mut EvmDataReader) -> EvmResult<Self> {
        let mut inner_reader = reader.read_pointer()?;

        // Read bytes/string size.
        let array_size: usize = inner_reader
            .read::<U256>()
            .map_err(|_| revert("tried to parse bytes/string length out of bounds"))?
            .try_into()
            .map_err(|_| revert("bytes/string length is too large"))?;

        // Get valid range over the bytes data.
        let range = inner_reader.move_cursor(array_size)?;

        let data = inner_reader
            .input
            .get(range)
            .ok_or_else(|| revert("tried to parse bytes/string out of bounds"))?;

        let bytes = Self(data.to_owned());

        Ok(bytes)
    }

    fn write(writer: &mut EvmDataWriter, value: Self) {
        let length = value.0.len();

        // Pad the data.
        // Leave it as is if a multiple of 32, otherwise pad to next
        // multiple or 32.
        let chunks = length / 32;
        let padded_size = match length % 32 {
            0 => chunks * 32,
            _ => (chunks + 1) * 32,
        };

        let mut value = value.0.to_vec();
        value.resize(padded_size, 0);

        writer.write_pointer(
            EvmDataWriter::new()
                .write(U256::from(length))
                .write_raw_bytes(&value)
                .build(),
        );
    }

    fn has_static_size() -> bool {
        false
    }
}