1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
use crate::{recode::Recode, to_abi::Abi, to_filled_abi::FilledAbi, types::Name};
use codec::Decode;

use sp_core::{H160, H256};
use sp_runtime::DispatchError;
use sp_std::{prelude::*, vec::IntoIter};

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Eth2IngressEventLog {
    pub address: H160,
    pub topics: Vec<H256>,
    pub data: Vec<u8>,
}

impl Decodable for Eth2IngressEventLog {
    fn decode(rlp: &rlp::Rlp) -> Result<Self, rlp::DecoderError> {
        let address = rlp.val_at::<H160>(0)?;
        let topics = rlp.list_at::<H256>(1).map_err(|e| {
            log::error!("Error decoding Eth2IngressEventLog topics: {:?}", e);
            e
        })?;
        let data = rlp.val_at::<Vec<u8>>(2).map_err(|e| {
            log::error!("Error decoding Eth2IngressEventLog data: {:?}", e);
            e
        })?;
        Ok(Eth2IngressEventLog {
            address,
            topics,
            data,
        })
    }
}

impl Encodable for Eth2IngressEventLog {
    fn rlp_append(&self, s: &mut rlp::RlpStream) {
        s.begin_list(3);
        s.append(&self.address);
        s.append_list::<H256, _>(&self.topics);
        // s.append_list::<H256, _>(&self.data);
        s.append(&self.data);
    }
}

impl Eth2IngressEventLog {
    pub fn encode(&self) -> Vec<u8> {
        rlp::encode(self).to_vec()
    }
}

#[test]
fn decodes_eth2_ingress_event_log_out_of_usdt_erc20_transfer() {
    let rlp_encoded_usdt_erc20: Vec<u8> = hex_literal::hex!("f89b947169d38820dfd117c3fa1f22a697dba58d90ba06f863a0ddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa0000000000000000000000000b12713bfa9d1de339ca14b01f8f14f092ffe75bfa00000000000000000000000000e8eb8efdb38c216f2ec7185b1f54855ac50a8cea00000000000000000000000000000000000000000000000000000000003473bc0").into();

    let decoded: Eth2IngressEventLog = rlp::decode(&rlp_encoded_usdt_erc20.as_slice()).unwrap();

    assert_eq!(
        decoded,
        Eth2IngressEventLog {
            address: H160::from(hex_literal::hex!(
                "7169d38820dfd117c3fa1f22a697dba58d90ba06"
            )),
            topics: vec![
                H256::from(hex_literal::hex!(
                    "ddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef"
                )),
                H256::from(hex_literal::hex!(
                    "000000000000000000000000b12713bfa9d1de339ca14b01f8f14f092ffe75bf"
                )), // from
                H256::from(hex_literal::hex!(
                    "0000000000000000000000000e8eb8efdb38c216f2ec7185b1f54855ac50a8ce"
                )), // to
            ],
            data: vec![
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                3, 71, 59, 192
            ], // amount
        }
    );
}

use bytes::Bytes;
use frame_support::{ensure, log};
use rlp::{Decodable, Encodable};

pub struct RecodeRlp;

impl Recode for RecodeRlp {
    // For RLP relies on the RLP library to do the chopping, since RLP carries the type and size information within the data.
    fn chop_encoded(
        field_data: &[u8],
        _fields_iter_clone: IntoIter<Box<Abi>>,
    ) -> Result<(IntoIter<Vec<u8>>, u8), DispatchError> {
        let memo_prefix = field_data.first().copied().ok_or_else(|| {
            DispatchError::from(
                "RecodeRlp::chop_encoded - memo byte cannot be empty for RLP structs",
            )
        })?;

        let rlp = rlp::Rlp::new(field_data);
        let chopped_field_data: Vec<Vec<u8>> =
            rlp.into_iter().map(|rlp| rlp.as_raw().to_vec()).collect();

        Ok((chopped_field_data.into_iter(), memo_prefix))
    }

    fn event_to_filled(
        field_data: &[u8],
        name: Option<Name>,
        fields_iter_clone: IntoIter<Box<Abi>>,
    ) -> Result<(FilledAbi, usize), DispatchError> {
        let eth_ingress_event_log: Eth2IngressEventLog = rlp::decode(&mut &field_data[..])
            .map_err(|_e| "Eth2IngressEventLog::decode can't be derived with provided data")?;

        let (topics, data) = (eth_ingress_event_log.topics, eth_ingress_event_log.data);

        let mut flat_topics: Vec<u8> = topics
            .into_iter()
            .skip(1)
            .flat_map(|t| t.as_ref().to_vec())
            .collect::<Vec<u8>>();

        let mut total_size = 0usize;
        let fields_iter = fields_iter_clone.peekable();
        let mut flat_data = data.clone();

        let filled_abi_content = fields_iter
            .rev()
            .map(|field_descriptor| {
                let name = field_descriptor.get_name().unwrap_or(b"+".to_vec());
                let next_filled_abi = if name.last() == Some(&b'+') {
                    let (filled_abi, chopped_size) =
                        field_descriptor.decode_topics_as_rlp(flat_topics.clone())?;
                    flat_topics.truncate(flat_topics.len() - chopped_size);
                    total_size += chopped_size;
                    filled_abi
                } else {
                    let (filled_abi, chopped_size) =
                        field_descriptor.decode_topics_as_rlp(flat_data.clone())?;
                    flat_data.truncate(flat_data.len() - chopped_size);
                    total_size += chopped_size;
                    filled_abi
                };
                Ok(Box::new(next_filled_abi))
            })
            .collect::<Result<Vec<Box<FilledAbi>>, DispatchError>>()?
            .into_iter()
            .rev()
            .collect::<Vec<Box<FilledAbi>>>();

        Ok((FilledAbi::Log(name, filled_abi_content, 0u8), total_size))
    }
}

impl Abi {
    // assumes that the input is already padded to 32 bytes
    pub fn decode_topics_as_rlp(
        &self,
        input: Vec<u8>,
    ) -> Result<(FilledAbi, usize), DispatchError> {
        const MINIMUM_INPUT_LENGTH: usize = 32;
        ensure!(
            input.len() >= MINIMUM_INPUT_LENGTH,
            "decode_topics_as_rlp -- Invalid input length lesser than 32"
        );
        let input = Bytes::from(input);
        let input_len = input.len();
        let last_32b = &input[input_len - MINIMUM_INPUT_LENGTH..];

        match self {
            Abi::Account20(name) => {
                const ACCOUNT20_SIZE: usize = 20;
                let data: H160 =
                    H160::from_slice(&last_32b[MINIMUM_INPUT_LENGTH - ACCOUNT20_SIZE..]);
                Ok((
                    FilledAbi::Account20(name.clone(), data.as_bytes().to_vec()),
                    MINIMUM_INPUT_LENGTH,
                ))
            },
            Abi::H256(name) | Abi::Account32(name) => {
                let data: H256 = H256::from_slice(last_32b);
                Ok((
                    FilledAbi::H256(name.clone(), data.as_bytes().to_vec()),
                    MINIMUM_INPUT_LENGTH,
                ))
            },
            Abi::Bytes(name) => Ok((
                FilledAbi::Bytes(name.clone(), input.to_vec()),
                MINIMUM_INPUT_LENGTH,
            )),
            Abi::Bytes4(name) => Ok((
                FilledAbi::Bytes4(name.clone(), last_32b[0..4].to_vec()),
                MINIMUM_INPUT_LENGTH,
            )),
            Abi::Value256(name) => Ok((
                FilledAbi::Value256(name.clone(), last_32b.to_vec()),
                MINIMUM_INPUT_LENGTH,
            )),
            Abi::Value128(name) | Abi::Value64(name) | Abi::Value32(name) => {
                let as_u256 = sp_core::U256::from_big_endian(last_32b);
                let filled_abi = match self {
                    Abi::Value128(_) => {
                        let as_val: u128 = as_u256.try_into()?;
                        FilledAbi::Value128(name.clone(), rlp::encode(&as_val).to_vec())
                    },
                    Abi::Value64(_) => {
                        let as_val: u64 = as_u256.try_into()?;
                        FilledAbi::Value64(name.clone(), rlp::encode(&as_val).to_vec())
                    },
                    _ => {
                        let as_val: u32 = as_u256.try_into()?;
                        FilledAbi::Value32(name.clone(), rlp::encode(&as_val).to_vec())
                    },
                };

                Ok((filled_abi, MINIMUM_INPUT_LENGTH))
            },
            Abi::Byte(name) | Abi::Bool(name) => {
                const BYTE_INDEX: usize = 31;
                Ok((
                    FilledAbi::Byte(name.clone(), vec![last_32b[BYTE_INDEX]]),
                    MINIMUM_INPUT_LENGTH,
                ))
            },
            Abi::Tuple(name, (field1, field2)) => {
                let mut input = input;
                let (filled_2, filled_2_size) = field2.decode_topics_as_rlp(input.to_vec())?;
                ensure!(
                    filled_2_size <= input.len(),
                    "decode_topics_as_rlp -- Invalid input length for Tuple"
                );
                let input1 = input.split_to(filled_2_size);
                let (filled_1, filled_1_size) = field1.decode_topics_as_rlp(input1.to_vec())?;
                Ok((
                    FilledAbi::Tuple(name.clone(), (Box::new(filled_1), Box::new(filled_2))),
                    filled_2_size + filled_1_size,
                ))
            },
            Abi::Vec(name, field) => {
                let mut filled_vec = Vec::new();
                let mut input = input;
                let mut consumed = 0usize;

                while !input.is_empty() {
                    let filled = field.decode_topics_as_rlp(input.to_vec())?;
                    filled_vec.push(filled.0);
                    consumed += MINIMUM_INPUT_LENGTH;
                    input = input.split_to(input.len() - MINIMUM_INPUT_LENGTH);
                }
                Ok((
                    FilledAbi::Vec(name.clone(), Box::new(filled_vec), 0u8),
                    consumed,
                ))
            },
            Abi::Option(name, field) => {
                let filled = field.decode_topics_as_rlp(input.to_vec())?;
                Ok((
                    FilledAbi::Option(name.clone(), Box::new(filled.0)),
                    MINIMUM_INPUT_LENGTH,
                ))
            },
            Abi::Struct(name, fields) => {
                let mut filled_fields = Vec::new();
                let mut input = input;
                let mut consumed = 0usize;

                for field in fields {
                    let filled = field.decode_topics_as_rlp(input.to_vec())?;
                    filled_fields.push(Box::new(filled.0));
                    consumed += MINIMUM_INPUT_LENGTH;
                    input = input.split_to(input.len() - MINIMUM_INPUT_LENGTH);
                }
                Ok((
                    FilledAbi::Struct(name.clone(), filled_fields, 0u8),
                    consumed,
                ))
            },
            _ => {
                unreachable!("decode_topics_as_rlp -- Invalid type")
            },
        }
    }
}

#[cfg(test)]
mod test_recode_rlp {
    use super::*;
    use frame_support::assert_err;
    use hex_literal::hex;

    #[test]
    fn test_decode_topics_as_rlp_account20() {
        let abi = Abi::Account20(Some(b"address".to_vec()));
        let input = hex!("000000000000000000000000000102030405060708090A0B0C0D0E0F10111213");
        let result = abi.decode_topics_as_rlp(input.to_vec()).unwrap();
        let expected_output = (
            FilledAbi::Account20(
                Some(b"address".to_vec()),
                hex!("000102030405060708090A0B0C0D0E0F10111213").to_vec(),
            ),
            32,
        );
        assert_eq!(result, expected_output);
    }

    #[test]
    fn test_decode_topics_as_rlp_h256() {
        let abi = Abi::H256(Some(b"hash".to_vec()));
        let input = hex!("AABBCCDDEEFF00112233445566778899AABBCCDDEEFF00112233445566778899");
        let result = abi.decode_topics_as_rlp(input.to_vec()).unwrap();
        let expected_output = (
            FilledAbi::H256(
                Some(b"hash".to_vec()),
                hex!("AABBCCDDEEFF00112233445566778899AABBCCDDEEFF00112233445566778899").to_vec(),
            ),
            32,
        );
        assert_eq!(result, expected_output);
    }

    #[test]
    fn test_decode_topics_as_rlp_value256() {
        let abi = Abi::Value256(Some(b"value256".to_vec()));
        let input = hex!("0000000000000000000000000000000000000000000000000A0B0C0D0E0F1011");
        let result = abi.decode_topics_as_rlp(input.to_vec()).unwrap();
        let expected_output = (
            FilledAbi::Value256(
                Some(b"value256".to_vec()),
                hex!("0000000000000000000000000000000000000000000000000A0B0C0D0E0F1011").to_vec(),
            ),
            32,
        );
        assert_eq!(result, expected_output);
    }

    #[test]
    fn test_decode_topics_as_rlp_value128() {
        let abi = Abi::Value128(Some(b"value128".to_vec()));
        let input = hex!("0000000000000000000000000000000000000000000000000A0B0C0D0E0F1011");
        let result = abi.decode_topics_as_rlp(input.to_vec()).unwrap();
        let expected_output = (
            FilledAbi::Value128(
                Some(b"value128".to_vec()),
                vec![136, 10, 11, 12, 13, 14, 15, 16, 17],
            ),
            32,
        );
        assert_eq!(result, expected_output);
    }

    #[test]
    fn test_decode_topics_as_rlp_value64() {
        let abi = Abi::Value64(Some(b"value64".to_vec()));
        let input = hex!("0000000000000000000000000000000000000000000000000A0B0C0D0E0F1011");
        let result = abi.decode_topics_as_rlp(input.to_vec()).unwrap();
        let expected_output = (
            FilledAbi::Value64(
                Some(b"value64".to_vec()),
                vec![136, 10, 11, 12, 13, 14, 15, 16, 17],
            ),
            32,
        );
        assert_eq!(result, expected_output);
    }

    #[test]
    fn test_decode_topics_as_rlp_value32_throw_overflow() {
        let abi = Abi::Value32(Some(b"value32".to_vec()));
        let input = hex!("0000000000000000000000000000000000000000000000000A0B0C0D0E0F1011");
        assert_err!(
            abi.decode_topics_as_rlp(input.to_vec()),
            "integer overflow when casting to u32"
        );
    }

    // Helper function for H256 data
    fn h256_data(input: &[u8; 32]) -> Vec<u8> {
        let mut data = vec![0; 32];
        data.copy_from_slice(input);
        data
    }

    #[test]
    fn test_decode_topics_as_rlp_h256_tuple() {
        let abi = Abi::Tuple(
            Some(b"tuple".to_vec()),
            (
                Box::new(Abi::H256(Some(b"h256_1".to_vec()))),
                Box::new(Abi::H256(Some(b"h256_2".to_vec()))),
            ),
        );
        let input1 = h256_data(&[1; 32]);
        let input2 = h256_data(&[2; 32]);
        let input = [&input1[..], &input2[..]].concat();

        let result = abi.decode_topics_as_rlp(input).unwrap();
        match result.0 {
            FilledAbi::Tuple(_, (field1, field2)) => {
                assert_eq!(field1.get_name(), Some(b"h256_1".to_vec()));
                assert_eq!(field2.get_name(), Some(b"h256_2".to_vec()));
            },
            _ => panic!("Unexpected result"),
        }
    }

    #[test]
    fn test_decode_topics_as_rlp_h256_option() {
        let abi = Abi::Option(
            Some(b"option".to_vec()),
            Box::new(Abi::H256(Some(b"h256".to_vec()))),
        );
        let input = h256_data(&[1; 32]);

        let result = abi.decode_topics_as_rlp(input).unwrap();
        match result.0 {
            FilledAbi::Option(_, inner) => {
                assert_eq!(inner.get_name(), Some(b"h256".to_vec()));
            },
            _ => panic!("Unexpected result"),
        }
    }

    #[test]
    fn test_decode_topics_as_rlp_h256_vector() {
        let abi = Abi::Vec(
            Some(b"vector".to_vec()),
            Box::new(Abi::H256(Some(b"h256".to_vec()))),
        );
        let input1 = h256_data(&[1; 32]);
        let input2 = h256_data(&[2; 32]);
        let input = [&input1[..], &input2[..]].concat();

        let result = abi.decode_topics_as_rlp(input).unwrap();
        match result.0 {
            FilledAbi::Vec(_, inner, _) => {
                assert_eq!(inner.len(), 2);
                assert_eq!(inner[0].get_name(), Some(b"h256".to_vec()));
                assert_eq!(inner[1].get_name(), Some(b"h256".to_vec()));
            },
            _ => panic!("Unexpected result"),
        }
    }

    #[test]
    fn test_decode_topics_as_rlp_struct() {
        let field1 = Box::new(Abi::H256(Some(b"field1".to_vec())));
        let field2 = Box::new(Abi::H256(Some(b"field2".to_vec())));
        let struct_abi = Abi::Struct(Some(b"test_struct".to_vec()), vec![field1, field2]);

        let input1 = hex!("1111111111111111111111111111111111111111111111111111111111111111");
        let input2 = hex!("2222222222222222222222222222222222222222222222222222222222222222");
        let combined_input = [&input2[..], &input1[..]].concat();

        let (filled_abi, consumed) = struct_abi.decode_topics_as_rlp(combined_input).unwrap();

        assert_eq!(consumed, 64);
        if let FilledAbi::Struct(name, fields, _) = filled_abi {
            assert_eq!(name, Some(b"test_struct".to_vec()));
            assert_eq!(fields.len(), 2);

            if let FilledAbi::H256(field_name, data) = &*fields[0] {
                assert_eq!(field_name, &Some(b"field1".to_vec()));
                assert_eq!(data, &input1);
            } else {
                panic!("Unexpected FilledAbi variant for field1");
            }

            if let FilledAbi::H256(field_name, data) = &*fields[1] {
                assert_eq!(field_name, &Some(b"field2".to_vec()));
                assert_eq!(data, &input2);
            } else {
                panic!("Unexpected FilledAbi variant for field2");
            }
        } else {
            panic!("Unexpected FilledAbi variant");
        }
    }
}