1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
// This file is part of Substrate.

// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Environment definition of the wasm smart-contract runtime.

use crate::{
    exec::{ExecError, ExecResult, Ext, Key, TopicOf},
    gas::{ChargedAmount, Token},
    schedule::HostFnWeights,
    BalanceOf, CodeHash, Config, DebugBufferVec, Error, SENTINEL,
};

use bitflags::bitflags;
use codec::{Decode, DecodeLimit, Encode, MaxEncodedLen};
use frame_support::{dispatch::DispatchError, ensure, traits::Get, weights::Weight, RuntimeDebug};
use pallet_contracts_primitives::{ExecReturnValue, ReturnFlags};
use pallet_contracts_proc_macro::define_env;
use sp_io::hashing::{blake2_128, blake2_256, keccak_256, sha2_256};
use sp_runtime::traits::{Bounded, Zero};
use sp_std::{fmt, prelude::*};
use wasmi::{core::HostError, errors::LinkerError, Linker, Memory, Store};

/// The maximum nesting depth a contract can use when encoding types.
const MAX_DECODE_NESTING: u32 = 256;

/// Passed to [`Environment`] to determine whether it should expose deprecated interfaces.
pub enum AllowDeprecatedInterface {
    /// No deprecated interfaces are exposed.
    No,
    /// Deprecated interfaces are exposed.
    Yes,
}

/// Passed to [`Environment`] to determine whether it should expose unstable interfaces.
pub enum AllowUnstableInterface {
    /// No unstable interfaces are exposed.
    No,
    /// Unstable interfaces are exposed.
    Yes,
}

/// Trait implemented by the [`define_env`](pallet_contracts_proc_macro::define_env) macro for the
/// emitted `Env` struct.
pub trait Environment<HostState> {
    /// Adds all declared functions to the supplied [`Linker`](wasmi::Linker) and
    /// [`Store`](wasmi::Store).
    fn define(
        store: &mut Store<HostState>,
        linker: &mut Linker<HostState>,
        allow_unstable: AllowUnstableInterface,
        allow_deprecated: AllowDeprecatedInterface,
    ) -> Result<(), LinkerError>;
}

/// Type of a storage key.
enum KeyType {
    /// Legacy fix sized key `[u8;32]`.
    Fix,
    /// Variable sized key used in transparent hashing,
    /// cannot be larger than MaxStorageKeyLen.
    Var(u32),
}

/// Every error that can be returned to a contract when it calls any of the host functions.
///
/// # Note
///
/// This enum can be extended in the future: New codes can be added but existing codes
/// will not be changed or removed. This means that any contract **must not** exhaustively
/// match return codes. Instead, contracts should prepare for unknown variants and deal with
/// those errors gracefully in order to be forward compatible.
#[derive(Debug)]
#[repr(u32)]
pub enum ReturnCode {
    /// API call successful.
    Success = 0,
    /// The called function trapped and has its state changes reverted.
    /// In this case no output buffer is returned.
    CalleeTrapped = 1,
    /// The called function ran to completion but decided to revert its state.
    /// An output buffer is returned when one was supplied.
    CalleeReverted = 2,
    /// The passed key does not exist in storage.
    KeyNotFound = 3,
    /// See [`Error::TransferFailed`].
    TransferFailed = 5,
    /// No code could be found at the supplied code hash.
    CodeNotFound = 7,
    /// The contract that was called is no contract (a plain account).
    NotCallable = 8,
    /// The call dispatched by `seal_call_runtime` was executed but returned an error.
    CallRuntimeFailed = 10,
    /// ECDSA pubkey recovery failed (most probably wrong recovery id or signature), or
    /// ECDSA compressed pubkey conversion into Ethereum address failed (most probably
    /// wrong pubkey provided).
    EcdsaRecoverFailed = 11,
    /// sr25519 signature verification failed.
    Sr25519VerifyFailed = 12,
}

impl From<ExecReturnValue> for ReturnCode {
    fn from(from: ExecReturnValue) -> Self {
        if from.flags.contains(ReturnFlags::REVERT) {
            Self::CalleeReverted
        } else {
            Self::Success
        }
    }
}

impl From<ReturnCode> for u32 {
    fn from(code: ReturnCode) -> u32 {
        code as u32
    }
}

/// The data passed through when a contract uses `seal_return`.
#[derive(RuntimeDebug)]
pub struct ReturnData {
    /// The flags as passed through by the contract. They are still unchecked and
    /// will later be parsed into a `ReturnFlags` bitflags struct.
    flags: u32,
    /// The output buffer passed by the contract as return data.
    data: Vec<u8>,
}

/// Enumerates all possible reasons why a trap was generated.
///
/// This is either used to supply the caller with more information about why an error
/// occurred (the SupervisorError variant).
/// The other case is where the trap does not constitute an error but rather was invoked
/// as a quick way to terminate the application (all other variants).
#[derive(RuntimeDebug)]
pub enum TrapReason {
    /// The supervisor trapped the contract because of an error condition occurred during
    /// execution in privileged code.
    SupervisorError(DispatchError),
    /// Signals that trap was generated in response to call `seal_return` host function.
    Return(ReturnData),
    /// Signals that a trap was generated in response to a successful call to the
    /// `seal_terminate` host function.
    Termination,
}

impl<T: Into<DispatchError>> From<T> for TrapReason {
    fn from(from: T) -> Self {
        Self::SupervisorError(from.into())
    }
}

impl fmt::Display for TrapReason {
    fn fmt(&self, _f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        Ok(())
    }
}

impl HostError for TrapReason {}

#[cfg_attr(test, derive(Debug, PartialEq, Eq))]
#[derive(Copy, Clone)]
pub enum RuntimeCosts {
    /// Weight charged for copying data from the sandbox.
    CopyFromContract(u32),
    /// Weight charged for copying data to the sandbox.
    CopyToContract(u32),
    /// Weight of calling `seal_caller`.
    Caller,
    /// Weight of calling `seal_is_contract`.
    IsContract,
    /// Weight of calling `seal_code_hash`.
    CodeHash,
    /// Weight of calling `seal_own_code_hash`.
    OwnCodeHash,
    /// Weight of calling `seal_caller_is_origin`.
    CallerIsOrigin,
    /// Weight of calling `caller_is_root`.
    CallerIsRoot,
    /// Weight of calling `seal_address`.
    Address,
    /// Weight of calling `seal_gas_left`.
    GasLeft,
    /// Weight of calling `seal_balance`.
    Balance,
    /// Weight of calling `seal_value_transferred`.
    ValueTransferred,
    /// Weight of calling `seal_minimum_balance`.
    MinimumBalance,
    /// Weight of calling `seal_block_number`.
    BlockNumber,
    /// Weight of calling `seal_now`.
    Now,
    /// Weight of calling `seal_weight_to_fee`.
    WeightToFee,
    /// Weight of calling `seal_input` without the weight of copying the input.
    InputBase,
    /// Weight of calling `seal_return` for the given output size.
    Return(u32),
    /// Weight of calling `seal_terminate`.
    Terminate,
    /// Weight of calling `seal_random`. It includes the weight for copying the subject.
    Random,
    /// Weight of calling `seal_deposit_event` with the given number of topics and event size.
    DepositEvent { num_topic: u32, len: u32 },
    /// Weight of calling `seal_debug_message` per byte of passed message.
    DebugMessage(u32),
    /// Weight of calling `seal_set_storage` for the given storage item sizes.
    SetStorage { old_bytes: u32, new_bytes: u32 },
    /// Weight of calling `seal_clear_storage` per cleared byte.
    ClearStorage(u32),
    /// Weight of calling `seal_contains_storage` per byte of the checked item.
    ContainsStorage(u32),
    /// Weight of calling `seal_get_storage` with the specified size in storage.
    GetStorage(u32),
    /// Weight of calling `seal_take_storage` for the given size.
    TakeStorage(u32),
    /// Weight of calling `seal_transfer`.
    Transfer,
    /// Base weight of calling `seal_call`.
    CallBase,
    /// Weight of calling `seal_delegate_call` for the given input size.
    DelegateCallBase,
    /// Weight of the transfer performed during a call.
    CallSurchargeTransfer,
    /// Weight per byte that is cloned by supplying the `CLONE_INPUT` flag.
    CallInputCloned(u32),
    /// Weight of calling `seal_instantiate` for the given input length and salt.
    InstantiateBase { input_data_len: u32, salt_len: u32 },
    /// Weight of the transfer performed during an instantiate.
    InstantiateSurchargeTransfer,
    /// Weight of calling `seal_hash_sha_256` for the given input size.
    HashSha256(u32),
    /// Weight of calling `seal_hash_keccak_256` for the given input size.
    HashKeccak256(u32),
    /// Weight of calling `seal_hash_blake2_256` for the given input size.
    HashBlake256(u32),
    /// Weight of calling `seal_hash_blake2_128` for the given input size.
    HashBlake128(u32),
    /// Weight of calling `seal_ecdsa_recover`.
    EcdsaRecovery,
    /// Weight of calling `seal_sr25519_verify` for the given input size.
    Sr25519Verify(u32),
    /// Weight charged by a chain extension through `seal_call_chain_extension`.
    ChainExtension(Weight),
    /// Weight charged for calling into the runtime.
    CallRuntime(Weight),
    /// Weight of calling `seal_set_code_hash`
    SetCodeHash,
    /// Weight of calling `ecdsa_to_eth_address`
    EcdsaToEthAddress,
    /// Weight of calling `reentrance_count`
    ReentrantCount,
    /// Weight of calling `account_reentrance_count`
    AccountEntranceCount,
    /// Weight of calling `instantiation_nonce`
    InstantationNonce,
}

impl RuntimeCosts {
    fn token<T: Config>(&self, s: &HostFnWeights<T>) -> RuntimeToken {
        use self::RuntimeCosts::*;
        let weight = match *self {
            CopyFromContract(len) => s.return_per_byte.saturating_mul(len.into()),
            CopyToContract(len) => s.input_per_byte.saturating_mul(len.into()),
            Caller => s.caller,
            IsContract => s.is_contract,
            CodeHash => s.code_hash,
            OwnCodeHash => s.own_code_hash,
            CallerIsOrigin => s.caller_is_origin,
            CallerIsRoot => s.caller_is_root,
            Address => s.address,
            GasLeft => s.gas_left,
            Balance => s.balance,
            ValueTransferred => s.value_transferred,
            MinimumBalance => s.minimum_balance,
            BlockNumber => s.block_number,
            Now => s.now,
            WeightToFee => s.weight_to_fee,
            InputBase => s.input,
            Return(len) => s
                .r#return
                .saturating_add(s.return_per_byte.saturating_mul(len.into())),
            Terminate => s.terminate,
            Random => s.random,
            DepositEvent { num_topic, len } => s
                .deposit_event
                .saturating_add(s.deposit_event_per_topic.saturating_mul(num_topic.into()))
                .saturating_add(s.deposit_event_per_byte.saturating_mul(len.into())),
            DebugMessage(len) => s
                .debug_message
                .saturating_add(s.deposit_event_per_byte.saturating_mul(len.into())),
            SetStorage {
                new_bytes,
                old_bytes,
            } => s
                .set_storage
                .saturating_add(s.set_storage_per_new_byte.saturating_mul(new_bytes.into()))
                .saturating_add(s.set_storage_per_old_byte.saturating_mul(old_bytes.into())),
            ClearStorage(len) => s
                .clear_storage
                .saturating_add(s.clear_storage_per_byte.saturating_mul(len.into())),
            ContainsStorage(len) => s
                .contains_storage
                .saturating_add(s.contains_storage_per_byte.saturating_mul(len.into())),
            GetStorage(len) => s
                .get_storage
                .saturating_add(s.get_storage_per_byte.saturating_mul(len.into())),
            TakeStorage(len) => s
                .take_storage
                .saturating_add(s.take_storage_per_byte.saturating_mul(len.into())),
            Transfer => s.transfer,
            CallBase => s.call,
            DelegateCallBase => s.delegate_call,
            CallSurchargeTransfer => s.call_transfer_surcharge,
            CallInputCloned(len) => s.call_per_cloned_byte.saturating_mul(len.into()),
            InstantiateBase {
                input_data_len,
                salt_len,
            } => s
                .instantiate
                .saturating_add(
                    s.instantiate_per_input_byte
                        .saturating_mul(input_data_len.into()),
                )
                .saturating_add(s.instantiate_per_salt_byte.saturating_mul(salt_len.into())),
            InstantiateSurchargeTransfer => s.instantiate_transfer_surcharge,
            HashSha256(len) => s
                .hash_sha2_256
                .saturating_add(s.hash_sha2_256_per_byte.saturating_mul(len.into())),
            HashKeccak256(len) => s
                .hash_keccak_256
                .saturating_add(s.hash_keccak_256_per_byte.saturating_mul(len.into())),
            HashBlake256(len) => s
                .hash_blake2_256
                .saturating_add(s.hash_blake2_256_per_byte.saturating_mul(len.into())),
            HashBlake128(len) => s
                .hash_blake2_128
                .saturating_add(s.hash_blake2_128_per_byte.saturating_mul(len.into())),
            EcdsaRecovery => s.ecdsa_recover,
            Sr25519Verify(len) => s
                .sr25519_verify
                .saturating_add(s.sr25519_verify_per_byte.saturating_mul(len.into())),
            ChainExtension(weight) => weight,
            CallRuntime(weight) => weight,
            SetCodeHash => s.set_code_hash,
            EcdsaToEthAddress => s.ecdsa_to_eth_address,
            ReentrantCount => s.reentrance_count,
            AccountEntranceCount => s.account_reentrance_count,
            InstantationNonce => s.instantiation_nonce,
        };
        RuntimeToken {
            #[cfg(test)]
            _created_from: *self,
            weight,
        }
    }
}

/// Same as [`Runtime::charge_gas`].
///
/// We need this access as a macro because sometimes hiding the lifetimes behind
/// a function won't work out.
macro_rules! charge_gas {
    ($runtime:expr, $costs:expr) => {{
        let token = $costs.token(&$runtime.ext.schedule().host_fn_weights);
        $runtime.ext.gas_meter_mut().charge(token)
    }};
}

#[cfg_attr(test, derive(Debug, PartialEq, Eq))]
#[derive(Copy, Clone)]
struct RuntimeToken {
    #[cfg(test)]
    _created_from: RuntimeCosts,
    weight: Weight,
}

impl<T: Config> Token<T> for RuntimeToken {
    fn weight(&self) -> Weight {
        self.weight
    }
}

bitflags! {
    /// Flags used to change the behaviour of `seal_call` and `seal_delegate_call`.
    pub struct CallFlags: u32 {
        /// Forward the input of current function to the callee.
        ///
        /// Supplied input pointers are ignored when set.
        ///
        /// # Note
        ///
        /// A forwarding call will consume the current contracts input. Any attempt to
        /// access the input after this call returns will lead to [`Error::InputForwarded`].
        /// It does not matter if this is due to calling `seal_input` or trying another
        /// forwarding call. Consider using [`Self::CLONE_INPUT`] in order to preserve
        /// the input.
        const FORWARD_INPUT = 0b0000_0001;
        /// Identical to [`Self::FORWARD_INPUT`] but without consuming the input.
        ///
        /// This adds some additional weight costs to the call.
        ///
        /// # Note
        ///
        /// This implies [`Self::FORWARD_INPUT`] and takes precedence when both are set.
        const CLONE_INPUT = 0b0000_0010;
        /// Do not return from the call but rather return the result of the callee to the
        /// callers caller.
        ///
        /// # Note
        ///
        /// This makes the current contract completely transparent to its caller by replacing
        /// this contracts potential output by the callee ones. Any code after `seal_call`
        /// can be safely considered unreachable.
        const TAIL_CALL = 0b0000_0100;
        /// Allow the callee to reenter into the current contract.
        ///
        /// Without this flag any reentrancy into the current contract that originates from
        /// the callee (or any of its callees) is denied. This includes the first callee:
        /// You cannot call into yourself with this flag set.
        ///
        /// # Note
        ///
        /// For `seal_delegate_call` should be always unset, otherwise
        /// [`Error::InvalidCallFlags`] is returned.
        const ALLOW_REENTRY = 0b0000_1000;
    }
}

/// The kind of call that should be performed.
enum CallType {
    /// Execute another instantiated contract
    Call {
        callee_ptr: u32,
        value_ptr: u32,
        deposit_ptr: u32,
        weight: Weight,
    },
    /// Execute deployed code in the context (storage, account ID, value) of the caller contract
    DelegateCall { code_hash_ptr: u32 },
}

impl CallType {
    fn cost(&self) -> RuntimeCosts {
        match self {
            CallType::Call { .. } => RuntimeCosts::CallBase,
            CallType::DelegateCall { .. } => RuntimeCosts::DelegateCallBase,
        }
    }
}

/// This is only appropriate when writing out data of constant size that does not depend on user
/// input. In this case the costs for this copy was already charged as part of the token at
/// the beginning of the API entry point.
fn already_charged(_: u32) -> Option<RuntimeCosts> {
    None
}

/// Can only be used for one call.
pub struct Runtime<'a, E: Ext + 'a> {
    ext: &'a mut E,
    input_data: Option<Vec<u8>>,
    memory: Option<Memory>,
    chain_extension: Option<Box<<E::T as Config>::ChainExtension>>,
}

impl<'a, E: Ext + 'a> Runtime<'a, E> {
    pub fn new(ext: &'a mut E, input_data: Vec<u8>) -> Self {
        Runtime {
            ext,
            input_data: Some(input_data),
            memory: None,
            chain_extension: Some(Box::default()),
        }
    }

    pub fn memory(&self) -> Option<Memory> {
        self.memory
    }

    pub fn set_memory(&mut self, memory: Memory) {
        self.memory = Some(memory);
    }

    /// Converts the sandbox result and the runtime state into the execution outcome.
    pub fn to_execution_result(self, sandbox_result: Result<(), wasmi::Error>) -> ExecResult {
        use wasmi::core::TrapCode::OutOfFuel;
        use TrapReason::*;

        match sandbox_result {
            // Contract returned from main function -> no data was returned.
            Ok(_) => Ok(ExecReturnValue {
                flags: ReturnFlags::empty(),
                data: Vec::new(),
            }),
            // `OutOfGas` when host asks engine to consume more than left in the _store_.
            // We should never get this case, as gas meter is being charged (and hence raises error)
            // first.
            Err(wasmi::Error::Store(_)) => Err(Error::<E::T>::OutOfGas.into()),
            // Contract either trapped or some host function aborted the execution.
            Err(wasmi::Error::Trap(trap)) => {
                if let Some(OutOfFuel) = trap.trap_code() {
                    // `OutOfGas` during engine execution.
                    return Err(Error::<E::T>::OutOfGas.into())
                }
                // If we encoded a reason then it is some abort generated by a host function.
                if let Some(reason) = &trap.downcast_ref::<TrapReason>() {
                    match &reason {
                        Return(ReturnData { flags, data }) => {
                            let flags = ReturnFlags::from_bits(*flags)
                                .ok_or(Error::<E::T>::InvalidCallFlags)?;
                            return Ok(ExecReturnValue {
                                flags,
                                data: data.to_vec(),
                            })
                        },
                        Termination =>
                            return Ok(ExecReturnValue {
                                flags: ReturnFlags::empty(),
                                data: Vec::new(),
                            }),
                        SupervisorError(error) => return Err((*error).into()),
                    }
                }
                // Otherwise the trap came from the contract itself.
                Err(Error::<E::T>::ContractTrapped.into())
            },
            // Any other error is returned only if instantiation or linking failed (i.e.
            // wasm binary tried to import a function that is not provided by the host).
            // This shouldn't happen because validation process ought to reject such binaries.
            //
            // Because panics are really undesirable in the runtime code, we treat this as
            // a trap for now. Eventually, we might want to revisit this.
            Err(_) => Err(Error::<E::T>::CodeRejected.into()),
        }
    }

    /// Get a mutable reference to the inner `Ext`.
    ///
    /// This is mainly for the chain extension to have access to the environment the
    /// contract is executing in.
    pub fn ext(&mut self) -> &mut E {
        self.ext
    }

    /// Charge the gas meter with the specified token.
    ///
    /// Returns `Err(HostError)` if there is not enough gas.
    pub fn charge_gas(&mut self, costs: RuntimeCosts) -> Result<ChargedAmount, DispatchError> {
        charge_gas!(self, costs)
    }

    /// Adjust a previously charged amount down to its actual amount.
    ///
    /// This is when a maximum a priori amount was charged and then should be partially
    /// refunded to match the actual amount.
    pub fn adjust_gas(&mut self, charged: ChargedAmount, actual_costs: RuntimeCosts) {
        let token = actual_costs.token(&self.ext.schedule().host_fn_weights);
        self.ext.gas_meter_mut().adjust_gas(charged, token);
    }

    /// Read designated chunk from the sandbox memory.
    ///
    /// Returns `Err` if one of the following conditions occurs:
    ///
    /// - requested buffer is not within the bounds of the sandbox memory.
    pub fn read_sandbox_memory(
        &self,
        memory: &[u8],
        ptr: u32,
        len: u32,
    ) -> Result<Vec<u8>, DispatchError> {
        ensure!(
            len <= self.ext.schedule().limits.max_memory_size(),
            Error::<E::T>::OutOfBounds
        );
        let mut buf = vec![0u8; len as usize];
        self.read_sandbox_memory_into_buf(memory, ptr, buf.as_mut_slice())?;
        Ok(buf)
    }

    /// Read designated chunk from the sandbox memory into the supplied buffer.
    ///
    /// Returns `Err` if one of the following conditions occurs:
    ///
    /// - requested buffer is not within the bounds of the sandbox memory.
    pub fn read_sandbox_memory_into_buf(
        &self,
        memory: &[u8],
        ptr: u32,
        buf: &mut [u8],
    ) -> Result<(), DispatchError> {
        let ptr = ptr as usize;
        let bound_checked = memory
            .get(ptr..ptr + buf.len())
            .ok_or(Error::<E::T>::OutOfBounds)?;
        buf.copy_from_slice(bound_checked);
        Ok(())
    }

    /// Reads and decodes a type with a size fixed at compile time from contract memory.
    ///
    /// # Note
    ///
    /// The weight of reading a fixed value is included in the overall weight of any
    /// contract callable function.
    pub fn read_sandbox_memory_as<D: Decode + MaxEncodedLen>(
        &self,
        memory: &[u8],
        ptr: u32,
    ) -> Result<D, DispatchError> {
        let ptr = ptr as usize;
        let mut bound_checked = memory
            .get(ptr..ptr + D::max_encoded_len())
            .ok_or(Error::<E::T>::OutOfBounds)?;
        let decoded = D::decode_all_with_depth_limit(MAX_DECODE_NESTING, &mut bound_checked)
            .map_err(|_| DispatchError::from(Error::<E::T>::DecodingFailed))?;
        Ok(decoded)
    }

    /// Read designated chunk from the sandbox memory and attempt to decode into the specified type.
    ///
    /// Returns `Err` if one of the following conditions occurs:
    ///
    /// - requested buffer is not within the bounds of the sandbox memory.
    /// - the buffer contents cannot be decoded as the required type.
    ///
    /// # Note
    ///
    /// There must be an extra benchmark for determining the influence of `len` with
    /// regard to the overall weight.
    pub fn read_sandbox_memory_as_unbounded<D: Decode>(
        &self,
        memory: &[u8],
        ptr: u32,
        len: u32,
    ) -> Result<D, DispatchError> {
        let ptr = ptr as usize;
        let mut bound_checked = memory
            .get(ptr..ptr + len as usize)
            .ok_or(Error::<E::T>::OutOfBounds)?;
        let decoded = D::decode_all_with_depth_limit(MAX_DECODE_NESTING, &mut bound_checked)
            .map_err(|_| DispatchError::from(Error::<E::T>::DecodingFailed))?;
        Ok(decoded)
    }

    /// Write the given buffer and its length to the designated locations in sandbox memory and
    /// charge gas according to the token returned by `create_token`.
    //
    /// `out_ptr` is the location in sandbox memory where `buf` should be written to.
    /// `out_len_ptr` is an in-out location in sandbox memory. It is read to determine the
    /// length of the buffer located at `out_ptr`. If that buffer is large enough the actual
    /// `buf.len()` is written to this location.
    ///
    /// If `out_ptr` is set to the sentinel value of `SENTINEL` and `allow_skip` is true the
    /// operation is skipped and `Ok` is returned. This is supposed to help callers to make copying
    /// output optional. For example to skip copying back the output buffer of an `seal_call`
    /// when the caller is not interested in the result.
    ///
    /// `create_token` can optionally instruct this function to charge the gas meter with the token
    /// it returns. `create_token` receives the variable amount of bytes that are about to be copied
    /// by this function.
    ///
    /// In addition to the error conditions of `write_sandbox_memory` this functions returns
    /// `Err` if the size of the buffer located at `out_ptr` is too small to fit `buf`.
    pub fn write_sandbox_output(
        &mut self,
        memory: &mut [u8],
        out_ptr: u32,
        out_len_ptr: u32,
        buf: &[u8],
        allow_skip: bool,
        create_token: impl FnOnce(u32) -> Option<RuntimeCosts>,
    ) -> Result<(), DispatchError> {
        if allow_skip && out_ptr == SENTINEL {
            return Ok(())
        }

        let buf_len = buf.len() as u32;
        let len: u32 = self.read_sandbox_memory_as(memory, out_len_ptr)?;

        if len < buf_len {
            return Err(Error::<E::T>::OutputBufferTooSmall.into())
        }

        if let Some(costs) = create_token(buf_len) {
            self.charge_gas(costs)?;
        }

        self.write_sandbox_memory(memory, out_ptr, buf)?;
        self.write_sandbox_memory(memory, out_len_ptr, &buf_len.encode())
    }

    /// Write the given buffer to the designated location in the sandbox memory.
    ///
    /// Returns `Err` if one of the following conditions occurs:
    ///
    /// - designated area is not within the bounds of the sandbox memory.
    fn write_sandbox_memory(
        &self,
        memory: &mut [u8],
        ptr: u32,
        buf: &[u8],
    ) -> Result<(), DispatchError> {
        let ptr = ptr as usize;
        let bound_checked = memory
            .get_mut(ptr..ptr + buf.len())
            .ok_or(Error::<E::T>::OutOfBounds)?;
        bound_checked.copy_from_slice(buf);
        Ok(())
    }

    /// Computes the given hash function on the supplied input.
    ///
    /// Reads from the sandboxed input buffer into an intermediate buffer.
    /// Returns the result directly to the output buffer of the sandboxed memory.
    ///
    /// It is the callers responsibility to provide an output buffer that
    /// is large enough to hold the expected amount of bytes returned by the
    /// chosen hash function.
    ///
    /// # Note
    ///
    /// The `input` and `output` buffers may overlap.
    fn compute_hash_on_intermediate_buffer<F, R>(
        &self,
        memory: &mut [u8],
        hash_fn: F,
        input_ptr: u32,
        input_len: u32,
        output_ptr: u32,
    ) -> Result<(), DispatchError>
    where
        F: FnOnce(&[u8]) -> R,
        R: AsRef<[u8]>,
    {
        // Copy input into supervisor memory.
        let input = self.read_sandbox_memory(memory, input_ptr, input_len)?;
        // Compute the hash on the input buffer using the given hash function.
        let hash = hash_fn(&input);
        // Write the resulting hash back into the sandboxed output buffer.
        self.write_sandbox_memory(memory, output_ptr, hash.as_ref())?;
        Ok(())
    }

    /// Fallible conversion of `DispatchError` to `ReturnCode`.
    fn err_into_return_code(from: DispatchError) -> Result<ReturnCode, DispatchError> {
        use ReturnCode::*;

        let transfer_failed = Error::<E::T>::TransferFailed.into();
        let no_code = Error::<E::T>::CodeNotFound.into();
        let not_found = Error::<E::T>::ContractNotFound.into();

        match from {
            x if x == transfer_failed => Ok(TransferFailed),
            x if x == no_code => Ok(CodeNotFound),
            x if x == not_found => Ok(NotCallable),
            err => Err(err),
        }
    }

    /// Fallible conversion of a `ExecResult` to `ReturnCode`.
    fn exec_into_return_code(from: ExecResult) -> Result<ReturnCode, DispatchError> {
        use crate::exec::ErrorOrigin::Callee;

        let ExecError { error, origin } = match from {
            Ok(retval) => return Ok(retval.into()),
            Err(err) => err,
        };

        match (error, origin) {
            (_, Callee) => Ok(ReturnCode::CalleeTrapped),
            (err, _) => Self::err_into_return_code(err),
        }
    }

    fn decode_key(
        &self,
        memory: &[u8],
        key_type: KeyType,
        key_ptr: u32,
    ) -> Result<crate::exec::Key<E::T>, TrapReason> {
        let res = match key_type {
            KeyType::Fix => {
                let key = self.read_sandbox_memory(memory, key_ptr, 32u32)?;
                Key::try_from_fix(key)
            },
            KeyType::Var(len) => {
                ensure!(
                    len <= <<E as Ext>::T as Config>::MaxStorageKeyLen::get(),
                    Error::<E::T>::DecodingFailed
                );
                let key = self.read_sandbox_memory(memory, key_ptr, len)?;
                Key::try_from_var(key)
            },
        };

        res.map_err(|_| Error::<E::T>::DecodingFailed.into())
    }

    fn set_storage(
        &mut self,
        memory: &[u8],
        key_type: KeyType,
        key_ptr: u32,
        value_ptr: u32,
        value_len: u32,
    ) -> Result<u32, TrapReason> {
        let max_size = self.ext.max_value_size();
        let charged = self.charge_gas(RuntimeCosts::SetStorage {
            new_bytes: value_len,
            old_bytes: max_size,
        })?;
        if value_len > max_size {
            return Err(Error::<E::T>::ValueTooLarge.into())
        }
        let key = self.decode_key(memory, key_type, key_ptr)?;
        let value = Some(self.read_sandbox_memory(memory, value_ptr, value_len)?);
        let write_outcome = self.ext.set_storage(&key, value, false)?;

        self.adjust_gas(
            charged,
            RuntimeCosts::SetStorage {
                new_bytes: value_len,
                old_bytes: write_outcome.old_len(),
            },
        );
        Ok(write_outcome.old_len_with_sentinel())
    }

    fn clear_storage(
        &mut self,
        memory: &[u8],
        key_type: KeyType,
        key_ptr: u32,
    ) -> Result<u32, TrapReason> {
        let charged = self.charge_gas(RuntimeCosts::ClearStorage(self.ext.max_value_size()))?;
        let key = self.decode_key(memory, key_type, key_ptr)?;
        let outcome = self.ext.set_storage(&key, None, false)?;

        self.adjust_gas(charged, RuntimeCosts::ClearStorage(outcome.old_len()));
        Ok(outcome.old_len_with_sentinel())
    }

    fn get_storage(
        &mut self,
        memory: &mut [u8],
        key_type: KeyType,
        key_ptr: u32,
        out_ptr: u32,
        out_len_ptr: u32,
    ) -> Result<ReturnCode, TrapReason> {
        let charged = self.charge_gas(RuntimeCosts::GetStorage(self.ext.max_value_size()))?;
        let key = self.decode_key(memory, key_type, key_ptr)?;
        let outcome = self.ext.get_storage(&key);

        if let Some(value) = outcome {
            self.adjust_gas(charged, RuntimeCosts::GetStorage(value.len() as u32));
            self.write_sandbox_output(
                memory,
                out_ptr,
                out_len_ptr,
                &value,
                false,
                already_charged,
            )?;
            Ok(ReturnCode::Success)
        } else {
            self.adjust_gas(charged, RuntimeCosts::GetStorage(0));
            Ok(ReturnCode::KeyNotFound)
        }
    }

    fn contains_storage(
        &mut self,
        memory: &[u8],
        key_type: KeyType,
        key_ptr: u32,
    ) -> Result<u32, TrapReason> {
        let charged = self.charge_gas(RuntimeCosts::ContainsStorage(self.ext.max_value_size()))?;
        let key = self.decode_key(memory, key_type, key_ptr)?;
        let outcome = self.ext.get_storage_size(&key);

        self.adjust_gas(charged, RuntimeCosts::ClearStorage(outcome.unwrap_or(0)));
        Ok(outcome.unwrap_or(SENTINEL))
    }

    fn call(
        &mut self,
        memory: &mut [u8],
        flags: CallFlags,
        call_type: CallType,
        input_data_ptr: u32,
        input_data_len: u32,
        output_ptr: u32,
        output_len_ptr: u32,
    ) -> Result<ReturnCode, TrapReason> {
        self.charge_gas(call_type.cost())?;
        let input_data = if flags.contains(CallFlags::CLONE_INPUT) {
            let input = self
                .input_data
                .as_ref()
                .ok_or(Error::<E::T>::InputForwarded)?;
            charge_gas!(self, RuntimeCosts::CallInputCloned(input.len() as u32))?;
            input.clone()
        } else if flags.contains(CallFlags::FORWARD_INPUT) {
            self.input_data
                .take()
                .ok_or(Error::<E::T>::InputForwarded)?
        } else {
            self.charge_gas(RuntimeCosts::CopyFromContract(input_data_len))?;
            self.read_sandbox_memory(memory, input_data_ptr, input_data_len)?
        };

        let call_outcome = match call_type {
            CallType::Call {
                callee_ptr,
                value_ptr,
                deposit_ptr,
                weight,
            } => {
                let callee: <<E as Ext>::T as frame_system::Config>::AccountId =
                    self.read_sandbox_memory_as(memory, callee_ptr)?;
                let deposit_limit: BalanceOf<<E as Ext>::T> = if deposit_ptr == SENTINEL {
                    BalanceOf::<<E as Ext>::T>::zero()
                } else {
                    self.read_sandbox_memory_as(memory, deposit_ptr)?
                };
                let value: BalanceOf<<E as Ext>::T> =
                    self.read_sandbox_memory_as(memory, value_ptr)?;
                if value > 0u32.into() {
                    self.charge_gas(RuntimeCosts::CallSurchargeTransfer)?;
                }
                self.ext.call(
                    weight,
                    deposit_limit,
                    callee,
                    value,
                    input_data,
                    flags.contains(CallFlags::ALLOW_REENTRY),
                )
            },
            CallType::DelegateCall { code_hash_ptr } => {
                if flags.contains(CallFlags::ALLOW_REENTRY) {
                    return Err(Error::<E::T>::InvalidCallFlags.into())
                }
                let code_hash = self.read_sandbox_memory_as(memory, code_hash_ptr)?;
                self.ext.delegate_call(code_hash, input_data)
            },
        };

        // `TAIL_CALL` only matters on an `OK` result. Otherwise the call stack comes to
        // a halt anyways without anymore code being executed.
        if flags.contains(CallFlags::TAIL_CALL) {
            if let Ok(return_value) = call_outcome {
                return Err(TrapReason::Return(ReturnData {
                    flags: return_value.flags.bits(),
                    data: return_value.data,
                }))
            }
        }

        if let Ok(output) = &call_outcome {
            self.write_sandbox_output(
                memory,
                output_ptr,
                output_len_ptr,
                &output.data,
                true,
                |len| Some(RuntimeCosts::CopyToContract(len)),
            )?;
        }
        Ok(Runtime::<E>::exec_into_return_code(call_outcome)?)
    }

    fn instantiate(
        &mut self,
        memory: &mut [u8],
        code_hash_ptr: u32,
        weight: Weight,
        deposit_ptr: u32,
        value_ptr: u32,
        input_data_ptr: u32,
        input_data_len: u32,
        address_ptr: u32,
        address_len_ptr: u32,
        output_ptr: u32,
        output_len_ptr: u32,
        salt_ptr: u32,
        salt_len: u32,
    ) -> Result<ReturnCode, TrapReason> {
        self.charge_gas(RuntimeCosts::InstantiateBase {
            input_data_len,
            salt_len,
        })?;
        let deposit_limit: BalanceOf<<E as Ext>::T> = if deposit_ptr == SENTINEL {
            BalanceOf::<<E as Ext>::T>::zero()
        } else {
            self.read_sandbox_memory_as(memory, deposit_ptr)?
        };
        let value: BalanceOf<<E as Ext>::T> = self.read_sandbox_memory_as(memory, value_ptr)?;
        if value > 0u32.into() {
            self.charge_gas(RuntimeCosts::InstantiateSurchargeTransfer)?;
        }
        let code_hash: CodeHash<<E as Ext>::T> =
            self.read_sandbox_memory_as(memory, code_hash_ptr)?;
        let input_data = self.read_sandbox_memory(memory, input_data_ptr, input_data_len)?;
        let salt = self.read_sandbox_memory(memory, salt_ptr, salt_len)?;
        let instantiate_outcome =
            self.ext
                .instantiate(weight, deposit_limit, code_hash, value, input_data, &salt);
        if let Ok((address, output)) = &instantiate_outcome {
            if !output.flags.contains(ReturnFlags::REVERT) {
                self.write_sandbox_output(
                    memory,
                    address_ptr,
                    address_len_ptr,
                    &address.encode(),
                    true,
                    already_charged,
                )?;
            }
            self.write_sandbox_output(
                memory,
                output_ptr,
                output_len_ptr,
                &output.data,
                true,
                |len| Some(RuntimeCosts::CopyToContract(len)),
            )?;
        }
        Ok(Runtime::<E>::exec_into_return_code(
            instantiate_outcome.map(|(_, retval)| retval),
        )?)
    }

    fn terminate(&mut self, memory: &[u8], beneficiary_ptr: u32) -> Result<(), TrapReason> {
        self.charge_gas(RuntimeCosts::Terminate)?;
        let beneficiary: <<E as Ext>::T as frame_system::Config>::AccountId =
            self.read_sandbox_memory_as(memory, beneficiary_ptr)?;
        self.ext.terminate(&beneficiary)?;
        Err(TrapReason::Termination)
    }
}

// This is the API exposed to contracts.
//
// # Note
//
// Any input that leads to a out of bound error (reading or writing) or failing to decode
// data passed to the supervisor will lead to a trap. This is not documented explicitly
// for every function.
#[define_env(doc)]
pub mod env {
    /// Set the value at the given key in the contract storage.
    ///
    /// Equivalent to the newer [`seal1`][`super::api_doc::Version1::set_storage`] version with the
    /// exception of the return type. Still a valid thing to call when not interested in the return
    /// value.
    #[prefixed_alias]
    fn set_storage(
        ctx: _,
        memory: _,
        key_ptr: u32,
        value_ptr: u32,
        value_len: u32,
    ) -> Result<(), TrapReason> {
        ctx.set_storage(memory, KeyType::Fix, key_ptr, value_ptr, value_len)
            .map(|_| ())
    }

    /// Set the value at the given key in the contract storage.
    ///
    /// This version is to be used with a fixed sized storage key. For runtimes supporting
    /// transparent hashing, please use the newer version of this function.
    ///
    /// The value length must not exceed the maximum defined by the contracts module parameters.
    /// Specifying a `value_len` of zero will store an empty value.
    ///
    /// # Parameters
    ///
    /// - `key_ptr`: pointer into the linear memory where the location to store the value is placed.
    /// - `value_ptr`: pointer into the linear memory where the value to set is placed.
    /// - `value_len`: the length of the value in bytes.
    ///
    /// # Return Value
    ///
    /// Returns the size of the pre-existing value at the specified key if any. Otherwise
    /// `SENTINEL` is returned as a sentinel value.
    #[version(1)]
    #[prefixed_alias]
    fn set_storage(
        ctx: _,
        memory: _,
        key_ptr: u32,
        value_ptr: u32,
        value_len: u32,
    ) -> Result<u32, TrapReason> {
        ctx.set_storage(memory, KeyType::Fix, key_ptr, value_ptr, value_len)
    }

    /// Set the value at the given key in the contract storage.
    ///
    /// The key and value lengths must not exceed the maximums defined by the contracts module
    /// parameters. Specifying a `value_len` of zero will store an empty value.
    ///
    /// # Parameters
    ///
    /// - `key_ptr`: pointer into the linear memory where the location to store the value is placed.
    /// - `key_len`: the length of the key in bytes.
    /// - `value_ptr`: pointer into the linear memory where the value to set is placed.
    /// - `value_len`: the length of the value in bytes.
    ///
    /// # Return Value
    ///
    /// Returns the size of the pre-existing value at the specified key if any. Otherwise
    /// `SENTINEL` is returned as a sentinel value.
    #[version(2)]
    #[prefixed_alias]
    fn set_storage(
        ctx: _,
        memory: _,
        key_ptr: u32,
        key_len: u32,
        value_ptr: u32,
        value_len: u32,
    ) -> Result<u32, TrapReason> {
        ctx.set_storage(memory, KeyType::Var(key_len), key_ptr, value_ptr, value_len)
    }

    /// Clear the value at the given key in the contract storage.
    ///
    /// Equivalent to the newer [`seal1`][`super::api_doc::Version1::clear_storage`] version with
    /// the exception of the return type. Still a valid thing to call when not interested in the
    /// return value.
    #[prefixed_alias]
    fn clear_storage(ctx: _, memory: _, key_ptr: u32) -> Result<(), TrapReason> {
        ctx.clear_storage(memory, KeyType::Fix, key_ptr).map(|_| ())
    }

    /// Clear the value at the given key in the contract storage.
    ///
    /// # Parameters
    ///
    /// - `key_ptr`: pointer into the linear memory where the key is placed.
    /// - `key_len`: the length of the key in bytes.
    ///
    /// # Return Value
    ///
    /// Returns the size of the pre-existing value at the specified key if any. Otherwise
    /// `SENTINEL` is returned as a sentinel value.
    #[version(1)]
    #[prefixed_alias]
    fn clear_storage(ctx: _, memory: _, key_ptr: u32, key_len: u32) -> Result<u32, TrapReason> {
        ctx.clear_storage(memory, KeyType::Var(key_len), key_ptr)
    }

    /// Retrieve the value under the given key from storage.
    ///
    /// This version is to be used with a fixed sized storage key. For runtimes supporting
    /// transparent hashing, please use the newer version of this function.
    ///
    /// # Parameters
    ///
    /// - `key_ptr`: pointer into the linear memory where the key of the requested value is placed.
    /// - `out_ptr`: pointer to the linear memory where the value is written to.
    /// - `out_len_ptr`: in-out pointer into linear memory where the buffer length is read from and
    ///   the value length is written to.
    ///
    /// # Errors
    ///
    /// `ReturnCode::KeyNotFound`
    #[prefixed_alias]
    fn get_storage(
        ctx: _,
        memory: _,
        key_ptr: u32,
        out_ptr: u32,
        out_len_ptr: u32,
    ) -> Result<ReturnCode, TrapReason> {
        ctx.get_storage(memory, KeyType::Fix, key_ptr, out_ptr, out_len_ptr)
    }

    /// Retrieve the value under the given key from storage.
    ///
    /// This version is to be used with a fixed sized storage key. For runtimes supporting
    /// transparent hashing, please use the newer version of this function.
    ///
    /// The key length must not exceed the maximum defined by the contracts module parameter.
    ///
    /// # Parameters
    ///
    /// - `key_ptr`: pointer into the linear memory where the key of the requested value is placed.
    /// - `key_len`: the length of the key in bytes.
    /// - `out_ptr`: pointer to the linear memory where the value is written to.
    /// - `out_len_ptr`: in-out pointer into linear memory where the buffer length is read from and
    ///   the value length is written to.
    ///
    /// # Errors
    ///
    /// - `ReturnCode::KeyNotFound`
    #[version(1)]
    #[prefixed_alias]
    fn get_storage(
        ctx: _,
        memory: _,
        key_ptr: u32,
        key_len: u32,
        out_ptr: u32,
        out_len_ptr: u32,
    ) -> Result<ReturnCode, TrapReason> {
        ctx.get_storage(memory, KeyType::Var(key_len), key_ptr, out_ptr, out_len_ptr)
    }

    /// Checks whether there is a value stored under the given key.
    ///
    /// This version is to be used with a fixed sized storage key. For runtimes supporting
    /// transparent hashing, please use the newer version of this function.
    ///
    /// # Parameters
    ///
    /// - `key_ptr`: pointer into the linear memory where the key of the requested value is placed.
    ///
    /// # Return Value
    ///
    /// Returns the size of the pre-existing value at the specified key if any. Otherwise
    /// `SENTINEL` is returned as a sentinel value.
    #[prefixed_alias]
    fn contains_storage(ctx: _, memory: _, key_ptr: u32) -> Result<u32, TrapReason> {
        ctx.contains_storage(memory, KeyType::Fix, key_ptr)
    }

    /// Checks whether there is a value stored under the given key.
    ///
    /// The key length must not exceed the maximum defined by the contracts module parameter.
    ///
    /// # Parameters
    ///
    /// - `key_ptr`: pointer into the linear memory where the key of the requested value is placed.
    /// - `key_len`: the length of the key in bytes.
    ///
    /// # Return Value
    ///
    /// Returns the size of the pre-existing value at the specified key if any. Otherwise
    /// `SENTINEL` is returned as a sentinel value.
    #[version(1)]
    #[prefixed_alias]
    fn contains_storage(ctx: _, memory: _, key_ptr: u32, key_len: u32) -> Result<u32, TrapReason> {
        ctx.contains_storage(memory, KeyType::Var(key_len), key_ptr)
    }

    /// Retrieve and remove the value under the given key from storage.
    ///
    /// # Parameters
    ///
    /// - `key_ptr`: pointer into the linear memory where the key of the requested value is placed.
    /// - `key_len`: the length of the key in bytes.
    /// - `out_ptr`: pointer to the linear memory where the value is written to.
    /// - `out_len_ptr`: in-out pointer into linear memory where the buffer length is read from and
    ///   the value length is written to.
    ///
    /// # Errors
    ///
    /// - `ReturnCode::KeyNotFound`
    #[prefixed_alias]
    fn take_storage(
        ctx: _,
        memory: _,
        key_ptr: u32,
        key_len: u32,
        out_ptr: u32,
        out_len_ptr: u32,
    ) -> Result<ReturnCode, TrapReason> {
        let charged = ctx.charge_gas(RuntimeCosts::TakeStorage(ctx.ext.max_value_size()))?;
        ensure!(
            key_len <= <<E as Ext>::T as Config>::MaxStorageKeyLen::get(),
            Error::<E::T>::DecodingFailed
        );
        let key = ctx.read_sandbox_memory(memory, key_ptr, key_len)?;
        if let crate::storage::WriteOutcome::Taken(value) = ctx.ext.set_storage(
            &Key::<E::T>::try_from_var(key).map_err(|_| Error::<E::T>::DecodingFailed)?,
            None,
            true,
        )? {
            ctx.adjust_gas(charged, RuntimeCosts::TakeStorage(value.len() as u32));
            ctx.write_sandbox_output(memory, out_ptr, out_len_ptr, &value, false, already_charged)?;
            Ok(ReturnCode::Success)
        } else {
            ctx.adjust_gas(charged, RuntimeCosts::TakeStorage(0));
            Ok(ReturnCode::KeyNotFound)
        }
    }

    /// Transfer some value to another account.
    ///
    /// # Parameters
    ///
    /// - `account_ptr`: a pointer to the address of the beneficiary account Should be decodable as
    ///   an `T::AccountId`. Traps otherwise.
    /// - `account_len`: length of the address buffer.
    /// - `value_ptr`: a pointer to the buffer with value, how much value to send. Should be
    ///   decodable as a `T::Balance`. Traps otherwise.
    /// - `value_len`: length of the value buffer.
    ///
    /// # Errors
    ///
    /// - `ReturnCode::TransferFailed`
    #[prefixed_alias]
    fn transfer(
        ctx: _,
        memory: _,
        account_ptr: u32,
        _account_len: u32,
        value_ptr: u32,
        _value_len: u32,
    ) -> Result<ReturnCode, TrapReason> {
        ctx.charge_gas(RuntimeCosts::Transfer)?;
        let callee: <<E as Ext>::T as frame_system::Config>::AccountId =
            ctx.read_sandbox_memory_as(memory, account_ptr)?;
        let value: BalanceOf<<E as Ext>::T> = ctx.read_sandbox_memory_as(memory, value_ptr)?;
        let result = ctx.ext.transfer(&callee, value);
        match result {
            Ok(()) => Ok(ReturnCode::Success),
            Err(err) => {
                let code = Runtime::<E>::err_into_return_code(err)?;
                Ok(code)
            },
        }
    }

    /// Make a call to another contract.
    ///
    /// # New version available
    ///
    /// This is equivalent to calling the newer version of this function with
    /// `flags` set to `ALLOW_REENTRY`. See the newer version for documentation.
    ///
    /// # Note
    ///
    /// The values `_callee_len` and `_value_len` are ignored because the encoded sizes
    /// of those types are fixed through
    /// [`codec::MaxEncodedLen`]. The fields exist
    /// for backwards compatibility. Consider switching to the newest version of this function.
    #[prefixed_alias]
    fn call(
        ctx: _,
        memory: _,
        callee_ptr: u32,
        _callee_len: u32,
        gas: u64,
        value_ptr: u32,
        _value_len: u32,
        input_data_ptr: u32,
        input_data_len: u32,
        output_ptr: u32,
        output_len_ptr: u32,
    ) -> Result<ReturnCode, TrapReason> {
        ctx.call(
            memory,
            CallFlags::ALLOW_REENTRY,
            CallType::Call {
                callee_ptr,
                value_ptr,
                deposit_ptr: SENTINEL,
                weight: Weight::from_parts(gas, 0),
            },
            input_data_ptr,
            input_data_len,
            output_ptr,
            output_len_ptr,
        )
    }

    /// Make a call to another contract.
    ///
    /// Equivalent to the newer [`seal2`][`super::api_doc::Version2::call`] version but works with
    /// *ref_time* Weight only. It is recommended to switch to the latest version, once it's
    /// stabilized.
    #[version(1)]
    #[prefixed_alias]
    fn call(
        ctx: _,
        memory: _,
        flags: u32,
        callee_ptr: u32,
        gas: u64,
        value_ptr: u32,
        input_data_ptr: u32,
        input_data_len: u32,
        output_ptr: u32,
        output_len_ptr: u32,
    ) -> Result<ReturnCode, TrapReason> {
        ctx.call(
            memory,
            CallFlags::from_bits(flags).ok_or(Error::<E::T>::InvalidCallFlags)?,
            CallType::Call {
                callee_ptr,
                value_ptr,
                deposit_ptr: SENTINEL,
                weight: Weight::from_parts(gas, 0),
            },
            input_data_ptr,
            input_data_len,
            output_ptr,
            output_len_ptr,
        )
    }

    /// Make a call to another contract.
    ///
    /// The callees output buffer is copied to `output_ptr` and its length to `output_len_ptr`.
    /// The copy of the output buffer can be skipped by supplying the sentinel value
    /// of `SENTINEL` to `output_ptr`.
    ///
    /// # Parameters
    ///
    /// - `flags`: See `crate::wasm::runtime::CallFlags` for a documentation of the supported flags.
    /// - `callee_ptr`: a pointer to the address of the callee contract. Should be decodable as an
    ///   `T::AccountId`. Traps otherwise.
    /// - `ref_time_limit`: how much *ref_time* Weight to devote to the execution.
    /// - `proof_size_limit`: how much *proof_size* Weight to devote to the execution.
    /// - `deposit_ptr`: a pointer to the buffer with value of the storage deposit limit for the
    ///   call. Should be decodable as a `T::Balance`. Traps otherwise. Passing `SENTINEL` means
    ///   setting no specific limit for the call, which implies storage usage up to the limit of the
    ///   parent call.
    /// - `value_ptr`: a pointer to the buffer with value, how much value to send. Should be
    ///   decodable as a `T::Balance`. Traps otherwise.
    /// - `input_data_ptr`: a pointer to a buffer to be used as input data to the callee.
    /// - `input_data_len`: length of the input data buffer.
    /// - `output_ptr`: a pointer where the output buffer is copied to.
    /// - `output_len_ptr`: in-out pointer to where the length of the buffer is read from and the
    ///   actual length is written to.
    ///
    /// # Errors
    ///
    /// An error means that the call wasn't successful output buffer is returned unless
    /// stated otherwise.
    ///
    /// - `ReturnCode::CalleeReverted`: Output buffer is returned.
    /// - `ReturnCode::CalleeTrapped`
    /// - `ReturnCode::TransferFailed`
    /// - `ReturnCode::NotCallable`
    #[version(2)]
    #[unstable]
    fn call(
        ctx: _,
        memory: _,
        flags: u32,
        callee_ptr: u32,
        ref_time_limit: u64,
        proof_size_limit: u64,
        deposit_ptr: u32,
        value_ptr: u32,
        input_data_ptr: u32,
        input_data_len: u32,
        output_ptr: u32,
        output_len_ptr: u32,
    ) -> Result<ReturnCode, TrapReason> {
        ctx.call(
            memory,
            CallFlags::from_bits(flags).ok_or(Error::<E::T>::InvalidCallFlags)?,
            CallType::Call {
                callee_ptr,
                value_ptr,
                deposit_ptr,
                weight: Weight::from_parts(ref_time_limit, proof_size_limit),
            },
            input_data_ptr,
            input_data_len,
            output_ptr,
            output_len_ptr,
        )
    }

    /// Execute code in the context (storage, caller, value) of the current contract.
    ///
    /// Reentrancy protection is always disabled since the callee is allowed
    /// to modify the callers storage. This makes going through a reentrancy attack
    /// unnecessary for the callee when it wants to exploit the caller.
    ///
    /// # Parameters
    ///
    /// - `flags`: see `crate::wasm::runtime::CallFlags` for a documentation of the supported flags.
    /// - `code_hash`: a pointer to the hash of the code to be called.
    /// - `input_data_ptr`: a pointer to a buffer to be used as input data to the callee.
    /// - `input_data_len`: length of the input data buffer.
    /// - `output_ptr`: a pointer where the output buffer is copied to.
    /// - `output_len_ptr`: in-out pointer to where the length of the buffer is read from and the
    ///   actual length is written to.
    ///
    /// # Errors
    ///
    /// An error means that the call wasn't successful and no output buffer is returned unless
    /// stated otherwise.
    ///
    /// - `ReturnCode::CalleeReverted`: Output buffer is returned.
    /// - `ReturnCode::CalleeTrapped`
    /// - `ReturnCode::CodeNotFound`
    #[prefixed_alias]
    fn delegate_call(
        ctx: _,
        memory: _,
        flags: u32,
        code_hash_ptr: u32,
        input_data_ptr: u32,
        input_data_len: u32,
        output_ptr: u32,
        output_len_ptr: u32,
    ) -> Result<ReturnCode, TrapReason> {
        ctx.call(
            memory,
            CallFlags::from_bits(flags).ok_or(Error::<E::T>::InvalidCallFlags)?,
            CallType::DelegateCall { code_hash_ptr },
            input_data_ptr,
            input_data_len,
            output_ptr,
            output_len_ptr,
        )
    }

    /// Instantiate a contract with the specified code hash.
    ///
    /// # New version available
    ///
    /// This is equivalent to calling the newer version of this function. The newer version
    /// drops the now unnecessary length fields.
    ///
    /// # Note
    ///
    /// The values `_code_hash_len` and `_value_len` are ignored because the encoded sizes
    /// of those types are fixed through [`codec::MaxEncodedLen`]. The fields exist
    /// for backwards compatibility. Consider switching to the newest version of this function.
    #[prefixed_alias]
    fn instantiate(
        ctx: _,
        memory: _,
        code_hash_ptr: u32,
        _code_hash_len: u32,
        gas: u64,
        value_ptr: u32,
        _value_len: u32,
        input_data_ptr: u32,
        input_data_len: u32,
        address_ptr: u32,
        address_len_ptr: u32,
        output_ptr: u32,
        output_len_ptr: u32,
        salt_ptr: u32,
        salt_len: u32,
    ) -> Result<ReturnCode, TrapReason> {
        ctx.instantiate(
            memory,
            code_hash_ptr,
            Weight::from_parts(gas, 0),
            SENTINEL,
            value_ptr,
            input_data_ptr,
            input_data_len,
            address_ptr,
            address_len_ptr,
            output_ptr,
            output_len_ptr,
            salt_ptr,
            salt_len,
        )
    }

    /// Instantiate a contract with the specified code hash.
    ///
    /// Equivalent to the newer [`seal2`][`super::api_doc::Version2::instantiate`] version but works
    /// with *ref_time* Weight only. It is recommended to switch to the latest version, once it's
    /// stabilized.
    #[version(1)]
    #[prefixed_alias]
    fn instantiate(
        ctx: _,
        memory: _,
        code_hash_ptr: u32,
        gas: u64,
        value_ptr: u32,
        input_data_ptr: u32,
        input_data_len: u32,
        address_ptr: u32,
        address_len_ptr: u32,
        output_ptr: u32,
        output_len_ptr: u32,
        salt_ptr: u32,
        salt_len: u32,
    ) -> Result<ReturnCode, TrapReason> {
        ctx.instantiate(
            memory,
            code_hash_ptr,
            Weight::from_parts(gas, 0),
            SENTINEL,
            value_ptr,
            input_data_ptr,
            input_data_len,
            address_ptr,
            address_len_ptr,
            output_ptr,
            output_len_ptr,
            salt_ptr,
            salt_len,
        )
    }

    /// Instantiate a contract with the specified code hash.
    ///
    /// This function creates an account and executes the constructor defined in the code specified
    /// by the code hash. The address of this new account is copied to `address_ptr` and its length
    /// to `address_len_ptr`. The constructors output buffer is copied to `output_ptr` and its
    /// length to `output_len_ptr`. The copy of the output buffer and address can be skipped by
    /// supplying the sentinel value of `SENTINEL` to `output_ptr` or `address_ptr`.
    ///
    /// `value` must be at least the minimum balance. Otherwise the instantiation fails and the
    /// contract is not created.
    ///
    /// # Parameters
    ///
    /// - `code_hash_ptr`: a pointer to the buffer that contains the initializer code.
    /// - `ref_time_limit`: how much *ref_time* Weight to devote to the execution.
    /// - `proof_size_limit`: how much *proof_size* Weight to devote to the execution.
    /// - `deposit_ptr`: a pointer to the buffer with value of the storage deposit limit for
    ///   instantiation. Should be decodable as a `T::Balance`. Traps otherwise. Passing `SENTINEL`
    ///   means setting no specific limit for the call, which implies storage usage up to the limit
    ///   of the parent call.
    /// - `value_ptr`: a pointer to the buffer with value, how much value to send. Should be
    ///   decodable as a `T::Balance`. Traps otherwise.
    /// - `input_data_ptr`: a pointer to a buffer to be used as input data to the initializer code.
    /// - `input_data_len`: length of the input data buffer.
    /// - `address_ptr`: a pointer where the new account's address is copied to. `SENTINEL` means
    ///   not to copy.
    /// - `address_len_ptr`: pointer to where put the length of the address.
    /// - `output_ptr`: a pointer where the output buffer is copied to. `SENTINEL` means not to
    ///   copy.
    /// - `output_len_ptr`: in-out pointer to where the length of the buffer is read from and the
    ///   actual length is written to.
    /// - `salt_ptr`: Pointer to raw bytes used for address derivation. See `fn contract_address`.
    /// - `salt_len`: length in bytes of the supplied salt.
    ///
    /// # Errors
    ///
    /// Please consult the `ReturnCode` enum declaration for more information on those
    /// errors. Here we only note things specific to this function.
    ///
    /// An error means that the account wasn't created and no address or output buffer
    /// is returned unless stated otherwise.
    ///
    /// - `ReturnCode::CalleeReverted`: Output buffer is returned.
    /// - `ReturnCode::CalleeTrapped`
    /// - `ReturnCode::TransferFailed`
    /// - `ReturnCode::CodeNotFound`
    #[version(2)]
    #[unstable]
    fn instantiate(
        ctx: _,
        memory: _,
        code_hash_ptr: u32,
        ref_time_limit: u64,
        proof_size_limit: u64,
        deposit_ptr: u32,
        value_ptr: u32,
        input_data_ptr: u32,
        input_data_len: u32,
        address_ptr: u32,
        address_len_ptr: u32,
        output_ptr: u32,
        output_len_ptr: u32,
        salt_ptr: u32,
        salt_len: u32,
    ) -> Result<ReturnCode, TrapReason> {
        ctx.instantiate(
            memory,
            code_hash_ptr,
            Weight::from_parts(ref_time_limit, proof_size_limit),
            deposit_ptr,
            value_ptr,
            input_data_ptr,
            input_data_len,
            address_ptr,
            address_len_ptr,
            output_ptr,
            output_len_ptr,
            salt_ptr,
            salt_len,
        )
    }

    /// Remove the calling account and transfer remaining balance.
    ///
    /// # New version available
    ///
    /// This is equivalent to calling the newer version of this function. The newer version
    /// drops the now unnecessary length fields.
    ///
    /// # Note
    ///
    /// The value `_beneficiary_len` is ignored because the encoded sizes
    /// this type is fixed through `[`MaxEncodedLen`]. The field exist for backwards
    /// compatibility. Consider switching to the newest version of this function.
    #[prefixed_alias]
    fn terminate(
        ctx: _,
        memory: _,
        beneficiary_ptr: u32,
        _beneficiary_len: u32,
    ) -> Result<(), TrapReason> {
        ctx.terminate(memory, beneficiary_ptr)
    }

    /// Remove the calling account and transfer remaining **free** balance.
    ///
    /// This function never returns. Either the termination was successful and the
    /// execution of the destroyed contract is halted. Or it failed during the termination
    /// which is considered fatal and results in a trap + rollback.
    ///
    /// - `beneficiary_ptr`: a pointer to the address of the beneficiary account where all where all
    ///   remaining funds of the caller are transferred. Should be decodable as an `T::AccountId`.
    ///   Traps otherwise.
    ///
    /// # Traps
    ///
    /// - The contract is live i.e is already on the call stack.
    /// - Failed to send the balance to the beneficiary.
    /// - The deletion queue is full.
    #[version(1)]
    #[prefixed_alias]
    fn terminate(ctx: _, memory: _, beneficiary_ptr: u32) -> Result<(), TrapReason> {
        ctx.terminate(memory, beneficiary_ptr)
    }

    /// Stores the input passed by the caller into the supplied buffer.
    ///
    /// The value is stored to linear memory at the address pointed to by `out_ptr`.
    /// `out_len_ptr` must point to a u32 value that describes the available space at
    /// `out_ptr`. This call overwrites it with the size of the value. If the available
    /// space at `out_ptr` is less than the size of the value a trap is triggered.
    ///
    /// # Note
    ///
    /// This function traps if the input was previously forwarded by a [`call()`][`Self::call()`].
    #[prefixed_alias]
    fn input(ctx: _, memory: _, out_ptr: u32, out_len_ptr: u32) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::InputBase)?;
        if let Some(input) = ctx.input_data.take() {
            ctx.write_sandbox_output(memory, out_ptr, out_len_ptr, &input, false, |len| {
                Some(RuntimeCosts::CopyToContract(len))
            })?;
            ctx.input_data = Some(input);
            Ok(())
        } else {
            Err(Error::<E::T>::InputForwarded.into())
        }
    }

    /// Cease contract execution and save a data buffer as a result of the execution.
    ///
    /// This function never returns as it stops execution of the caller.
    /// This is the only way to return a data buffer to the caller. Returning from
    /// execution without calling this function is equivalent to calling:
    /// ```nocompile
    /// seal_return(0, 0, 0);
    /// ```
    ///
    /// The flags argument is a bitfield that can be used to signal special return
    /// conditions to the supervisor:
    /// --- lsb ---
    /// bit 0      : REVERT - Revert all storage changes made by the caller.
    /// bit [1, 31]: Reserved for future use.
    /// --- msb ---
    ///
    /// Using a reserved bit triggers a trap.
    fn seal_return(
        ctx: _,
        memory: _,
        flags: u32,
        data_ptr: u32,
        data_len: u32,
    ) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::Return(data_len))?;
        Err(TrapReason::Return(ReturnData {
            flags,
            data: ctx.read_sandbox_memory(memory, data_ptr, data_len)?,
        }))
    }

    /// Stores the address of the caller into the supplied buffer.
    ///
    /// The value is stored to linear memory at the address pointed to by `out_ptr`.
    /// `out_len_ptr` must point to a u32 value that describes the available space at
    /// `out_ptr`. This call overwrites it with the size of the value. If the available
    /// space at `out_ptr` is less than the size of the value a trap is triggered.
    ///
    /// If this is a top-level call (i.e. initiated by an extrinsic) the origin address of the
    /// extrinsic will be returned. Otherwise, if this call is initiated by another contract then
    /// the address of the contract will be returned. The value is encoded as T::AccountId.
    ///
    /// If there is no address associated with the caller (e.g. because the caller is root) then
    /// it traps with `BadOrigin`.
    #[prefixed_alias]
    fn caller(ctx: _, memory: _, out_ptr: u32, out_len_ptr: u32) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::Caller)?;
        let caller = ctx.ext.caller().account_id()?.clone();
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            &caller.encode(),
            false,
            already_charged,
        )?)
    }

    /// Checks whether a specified address belongs to a contract.
    ///
    /// # Parameters
    ///
    /// - `account_ptr`: a pointer to the address of the beneficiary account Should be decodable as
    ///   an `T::AccountId`. Traps otherwise.
    ///
    /// Returned value is a `u32`-encoded boolean: (0 = false, 1 = true).
    #[prefixed_alias]
    fn is_contract(ctx: _, memory: _, account_ptr: u32) -> Result<u32, TrapReason> {
        ctx.charge_gas(RuntimeCosts::IsContract)?;
        let address: <<E as Ext>::T as frame_system::Config>::AccountId =
            ctx.read_sandbox_memory_as(memory, account_ptr)?;

        Ok(ctx.ext.is_contract(&address) as u32)
    }

    /// Retrieve the code hash for a specified contract address.
    ///
    /// # Parameters
    ///
    /// - `account_ptr`: a pointer to the address in question. Should be decodable as an
    ///   `T::AccountId`. Traps otherwise.
    /// - `out_ptr`: pointer to the linear memory where the returning value is written to.
    /// - `out_len_ptr`: in-out pointer into linear memory where the buffer length is read from and
    ///   the value length is written to.
    ///
    /// # Errors
    ///
    /// - `ReturnCode::KeyNotFound`
    #[prefixed_alias]
    fn code_hash(
        ctx: _,
        memory: _,
        account_ptr: u32,
        out_ptr: u32,
        out_len_ptr: u32,
    ) -> Result<ReturnCode, TrapReason> {
        ctx.charge_gas(RuntimeCosts::CodeHash)?;
        let address: <<E as Ext>::T as frame_system::Config>::AccountId =
            ctx.read_sandbox_memory_as(memory, account_ptr)?;
        if let Some(value) = ctx.ext.code_hash(&address) {
            ctx.write_sandbox_output(
                memory,
                out_ptr,
                out_len_ptr,
                &value.encode(),
                false,
                already_charged,
            )?;
            Ok(ReturnCode::Success)
        } else {
            Ok(ReturnCode::KeyNotFound)
        }
    }

    /// Retrieve the code hash of the currently executing contract.
    ///
    /// # Parameters
    ///
    /// - `out_ptr`: pointer to the linear memory where the returning value is written to.
    /// - `out_len_ptr`: in-out pointer into linear memory where the buffer length is read from and
    ///   the value length is written to.
    #[prefixed_alias]
    fn own_code_hash(ctx: _, memory: _, out_ptr: u32, out_len_ptr: u32) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::OwnCodeHash)?;
        let code_hash_encoded = &ctx.ext.own_code_hash().encode();
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            code_hash_encoded,
            false,
            already_charged,
        )?)
    }

    /// Checks whether the caller of the current contract is the origin of the whole call stack.
    ///
    /// Prefer this over [`is_contract()`][`Self::is_contract`] when checking whether your contract
    /// is being called by a contract or a plain account. The reason is that it performs better
    /// since it does not need to do any storage lookups.
    ///
    /// A return value of `true` indicates that this contract is being called by a plain account
    /// and `false` indicates that the caller is another contract.
    ///
    /// Returned value is a `u32`-encoded boolean: (`0 = false`, `1 = true`).
    #[prefixed_alias]
    fn caller_is_origin(ctx: _, _memory: _) -> Result<u32, TrapReason> {
        ctx.charge_gas(RuntimeCosts::CallerIsOrigin)?;
        Ok(ctx.ext.caller_is_origin() as u32)
    }

    /// Checks whether the caller of the current contract is root.
    ///
    /// Note that only the origin of the call stack can be root. Hence this function returning
    /// `true` implies that the contract is being called by the origin.
    ///
    /// A return value of `true` indicates that this contract is being called by a root origin,
    /// and `false` indicates that the caller is a signed origin.
    ///
    /// Returned value is a `u32`-encoded boolean: (`0 = false`, `1 = true`).
    #[unstable]
    fn caller_is_root(ctx: _, _memory: _) -> Result<u32, TrapReason> {
        ctx.charge_gas(RuntimeCosts::CallerIsRoot)?;
        Ok(ctx.ext.caller_is_root() as u32)
    }

    /// Stores the address of the current contract into the supplied buffer.
    ///
    /// The value is stored to linear memory at the address pointed to by `out_ptr`.
    /// `out_len_ptr` must point to a u32 value that describes the available space at
    /// `out_ptr`. This call overwrites it with the size of the value. If the available
    /// space at `out_ptr` is less than the size of the value a trap is triggered.
    #[prefixed_alias]
    fn address(ctx: _, memory: _, out_ptr: u32, out_len_ptr: u32) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::Address)?;
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            &ctx.ext.address().encode(),
            false,
            already_charged,
        )?)
    }

    /// Stores the price for the specified amount of gas into the supplied buffer.
    ///
    /// Equivalent to the newer [`seal1`][`super::api_doc::Version2::weight_to_fee`] version but
    /// works with *ref_time* Weight only. It is recommended to switch to the latest version, once
    /// it's stabilized.
    #[prefixed_alias]
    fn weight_to_fee(
        ctx: _,
        memory: _,
        gas: u64,
        out_ptr: u32,
        out_len_ptr: u32,
    ) -> Result<(), TrapReason> {
        let gas = Weight::from_parts(gas, 0);
        ctx.charge_gas(RuntimeCosts::WeightToFee)?;
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            &ctx.ext.get_weight_price(gas).encode(),
            false,
            already_charged,
        )?)
    }

    /// Stores the price for the specified amount of weight into the supplied buffer.
    ///
    /// # Parameters
    ///
    /// - `out_ptr`: pointer to the linear memory where the returning value is written to. If the
    ///   available space at `out_ptr` is less than the size of the value a trap is triggered.
    /// - `out_len_ptr`: in-out pointer into linear memory where the buffer length is read from and
    ///   the value length is written to.
    ///
    /// The data is encoded as `T::Balance`.
    ///
    /// # Note
    ///
    /// It is recommended to avoid specifying very small values for `ref_time_limit` and
    /// `proof_size_limit` as the prices for a single gas can be smaller than the basic balance
    /// unit.
    #[version(1)]
    #[unstable]
    fn weight_to_fee(
        ctx: _,
        memory: _,
        ref_time_limit: u64,
        proof_size_limit: u64,
        out_ptr: u32,
        out_len_ptr: u32,
    ) -> Result<(), TrapReason> {
        let weight = Weight::from_parts(ref_time_limit, proof_size_limit);
        ctx.charge_gas(RuntimeCosts::WeightToFee)?;
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            &ctx.ext.get_weight_price(weight).encode(),
            false,
            already_charged,
        )?)
    }

    /// Stores the weight left into the supplied buffer.
    ///
    /// Equivalent to the newer [`seal1`][`super::api_doc::Version2::gas_left`] version but
    /// works with *ref_time* Weight only. It is recommended to switch to the latest version, once
    /// it's stabilized.
    #[prefixed_alias]
    fn gas_left(ctx: _, memory: _, out_ptr: u32, out_len_ptr: u32) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::GasLeft)?;
        let gas_left = &ctx.ext.gas_meter().gas_left().ref_time().encode();
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            gas_left,
            false,
            already_charged,
        )?)
    }

    /// Stores the amount of weight left into the supplied buffer.
    ///
    /// The value is stored to linear memory at the address pointed to by `out_ptr`.
    /// `out_len_ptr` must point to a u32 value that describes the available space at
    /// `out_ptr`. This call overwrites it with the size of the value. If the available
    /// space at `out_ptr` is less than the size of the value a trap is triggered.
    ///
    /// The data is encoded as Weight.
    #[version(1)]
    #[unstable]
    fn gas_left(ctx: _, memory: _, out_ptr: u32, out_len_ptr: u32) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::GasLeft)?;
        let gas_left = &ctx.ext.gas_meter().gas_left().encode();
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            gas_left,
            false,
            already_charged,
        )?)
    }

    /// Stores the *free* balance of the current account into the supplied buffer.
    ///
    /// The value is stored to linear memory at the address pointed to by `out_ptr`.
    /// `out_len_ptr` must point to a u32 value that describes the available space at
    /// `out_ptr`. This call overwrites it with the size of the value. If the available
    /// space at `out_ptr` is less than the size of the value a trap is triggered.
    ///
    /// The data is encoded as `T::Balance`.
    #[prefixed_alias]
    fn balance(ctx: _, memory: _, out_ptr: u32, out_len_ptr: u32) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::Balance)?;
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            &ctx.ext.balance().encode(),
            false,
            already_charged,
        )?)
    }

    /// Stores the value transferred along with this call/instantiate into the supplied buffer.
    ///
    /// The value is stored to linear memory at the address pointed to by `out_ptr`.
    /// `out_len_ptr` must point to a `u32` value that describes the available space at
    /// `out_ptr`. This call overwrites it with the size of the value. If the available
    /// space at `out_ptr` is less than the size of the value a trap is triggered.
    ///
    /// The data is encoded as `T::Balance`.
    #[prefixed_alias]
    fn value_transferred(
        ctx: _,
        memory: _,
        out_ptr: u32,
        out_len_ptr: u32,
    ) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::ValueTransferred)?;
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            &ctx.ext.value_transferred().encode(),
            false,
            already_charged,
        )?)
    }

    /// Stores a random number for the current block and the given subject into the supplied buffer.
    ///
    /// The value is stored to linear memory at the address pointed to by `out_ptr`.
    /// `out_len_ptr` must point to a u32 value that describes the available space at
    /// `out_ptr`. This call overwrites it with the size of the value. If the available
    /// space at `out_ptr` is less than the size of the value a trap is triggered.
    ///
    /// The data is encoded as `T::Hash`.
    #[prefixed_alias]
    #[deprecated]
    fn random(
        ctx: _,
        memory: _,
        subject_ptr: u32,
        subject_len: u32,
        out_ptr: u32,
        out_len_ptr: u32,
    ) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::Random)?;
        if subject_len > ctx.ext.schedule().limits.subject_len {
            return Err(Error::<E::T>::RandomSubjectTooLong.into())
        }
        let subject_buf = ctx.read_sandbox_memory(memory, subject_ptr, subject_len)?;
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            &ctx.ext.random(&subject_buf).0.encode(),
            false,
            already_charged,
        )?)
    }

    /// Stores a random number for the current block and the given subject into the supplied buffer.
    ///
    /// The value is stored to linear memory at the address pointed to by `out_ptr`.
    /// `out_len_ptr` must point to a u32 value that describes the available space at
    /// `out_ptr`. This call overwrites it with the size of the value. If the available
    /// space at `out_ptr` is less than the size of the value a trap is triggered.
    ///
    /// The data is encoded as (T::Hash, frame_system::pallet_prelude::BlockNumberFor::<T>).
    ///
    /// # Changes from v0
    ///
    /// In addition to the seed it returns the block number since which it was determinable
    /// by chain observers.
    ///
    /// # Note
    ///
    /// The returned seed should only be used to distinguish commitments made before
    /// the returned block number. If the block number is too early (i.e. commitments were
    /// made afterwards), then ensure no further commitments may be made and repeatedly
    /// call this on later blocks until the block number returned is later than the latest
    /// commitment.
    #[version(1)]
    #[prefixed_alias]
    #[deprecated]
    fn random(
        ctx: _,
        memory: _,
        subject_ptr: u32,
        subject_len: u32,
        out_ptr: u32,
        out_len_ptr: u32,
    ) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::Random)?;
        if subject_len > ctx.ext.schedule().limits.subject_len {
            return Err(Error::<E::T>::RandomSubjectTooLong.into())
        }
        let subject_buf = ctx.read_sandbox_memory(memory, subject_ptr, subject_len)?;
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            &ctx.ext.random(&subject_buf).encode(),
            false,
            already_charged,
        )?)
    }

    /// Load the latest block timestamp into the supplied buffer
    ///
    /// The value is stored to linear memory at the address pointed to by `out_ptr`.
    /// `out_len_ptr` must point to a u32 value that describes the available space at
    /// `out_ptr`. This call overwrites it with the size of the value. If the available
    /// space at `out_ptr` is less than the size of the value a trap is triggered.
    #[prefixed_alias]
    fn now(ctx: _, memory: _, out_ptr: u32, out_len_ptr: u32) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::Now)?;
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            &ctx.ext.now().encode(),
            false,
            already_charged,
        )?)
    }

    /// Stores the minimum balance (a.k.a. existential deposit) into the supplied buffer.
    ///
    /// The data is encoded as `T::Balance`.
    #[prefixed_alias]
    fn minimum_balance(
        ctx: _,
        memory: _,
        out_ptr: u32,
        out_len_ptr: u32,
    ) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::MinimumBalance)?;
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            &ctx.ext.minimum_balance().encode(),
            false,
            already_charged,
        )?)
    }

    /// Stores the tombstone deposit into the supplied buffer.
    ///
    /// The value is stored to linear memory at the address pointed to by `out_ptr`.
    /// `out_len_ptr` must point to a u32 value that describes the available space at
    /// `out_ptr`. This call overwrites it with the size of the value. If the available
    /// space at `out_ptr` is less than the size of the value a trap is triggered.
    ///
    /// # Note
    ///
    /// There is no longer a tombstone deposit. This function always returns `0`.
    #[prefixed_alias]
    #[deprecated]
    fn tombstone_deposit(
        ctx: _,
        memory: _,
        out_ptr: u32,
        out_len_ptr: u32,
    ) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::Balance)?;
        let deposit = <BalanceOf<E::T>>::zero().encode();
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            &deposit,
            false,
            already_charged,
        )?)
    }

    /// Was used to restore the given destination contract sacrificing the caller.
    ///
    /// # Note
    ///
    /// The state rent functionality was removed. This is stub only exists for
    /// backwards compatibility
    #[prefixed_alias]
    #[deprecated]
    fn restore_to(
        ctx: _,
        memory: _,
        _dest_ptr: u32,
        _dest_len: u32,
        _code_hash_ptr: u32,
        _code_hash_len: u32,
        _rent_allowance_ptr: u32,
        _rent_allowance_len: u32,
        _delta_ptr: u32,
        _delta_count: u32,
    ) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::DebugMessage(0))?;
        Ok(())
    }

    /// Was used to restore the given destination contract sacrificing the caller.
    ///
    /// # Note
    ///
    /// The state rent functionality was removed. This is stub only exists for
    /// backwards compatibility
    #[version(1)]
    #[prefixed_alias]
    #[deprecated]
    fn restore_to(
        ctx: _,
        memory: _,
        _dest_ptr: u32,
        _code_hash_ptr: u32,
        _rent_allowance_ptr: u32,
        _delta_ptr: u32,
        _delta_count: u32,
    ) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::DebugMessage(0))?;
        Ok(())
    }

    /// Was used to set rent allowance of the contract.
    ///
    /// # Note
    ///
    /// The state rent functionality was removed. This is stub only exists for
    /// backwards compatibility.
    #[prefixed_alias]
    #[deprecated]
    fn set_rent_allowance(
        ctx: _,
        memory: _,
        _value_ptr: u32,
        _value_len: u32,
    ) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::DebugMessage(0))?;
        Ok(())
    }

    /// Was used to set rent allowance of the contract.
    ///
    /// # Note
    ///
    /// The state rent functionality was removed. This is stub only exists for
    /// backwards compatibility.
    #[version(1)]
    #[prefixed_alias]
    #[deprecated]
    fn set_rent_allowance(ctx: _, _memory: _, _value_ptr: u32) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::DebugMessage(0))?;
        Ok(())
    }

    /// Was used to store the rent allowance into the supplied buffer.
    ///
    /// # Note
    ///
    /// The state rent functionality was removed. This is stub only exists for
    /// backwards compatibility.
    #[prefixed_alias]
    #[deprecated]
    fn rent_allowance(ctx: _, memory: _, out_ptr: u32, out_len_ptr: u32) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::Balance)?;
        let rent_allowance = <BalanceOf<E::T>>::max_value().encode();
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            &rent_allowance,
            false,
            already_charged,
        )?)
    }

    /// Deposit a contract event with the data buffer and optional list of topics. There is a limit
    /// on the maximum number of topics specified by `event_topics`.
    ///
    /// - `topics_ptr`: a pointer to the buffer of topics encoded as `Vec<T::Hash>`. The value of
    ///   this is ignored if `topics_len` is set to `0`. The topics list can't contain duplicates.
    /// - `topics_len`:  the length of the topics buffer. Pass 0 if you want to pass an empty
    ///   vector.
    /// - `data_ptr`: a pointer to a raw data buffer which will saved along the event.
    /// - `data_len`:  the length of the data buffer.
    #[prefixed_alias]
    fn deposit_event(
        ctx: _,
        memory: _,
        topics_ptr: u32,
        topics_len: u32,
        data_ptr: u32,
        data_len: u32,
    ) -> Result<(), TrapReason> {
        let num_topic = topics_len
            .checked_div(sp_std::mem::size_of::<TopicOf<E::T>>() as u32)
            .ok_or("Zero sized topics are not allowed")?;
        ctx.charge_gas(RuntimeCosts::DepositEvent {
            num_topic,
            len: data_len,
        })?;
        if data_len > ctx.ext.max_value_size() {
            return Err(Error::<E::T>::ValueTooLarge.into())
        }

        let topics: Vec<TopicOf<<E as Ext>::T>> = match topics_len {
            0 => Vec::new(),
            _ => ctx.read_sandbox_memory_as_unbounded(memory, topics_ptr, topics_len)?,
        };

        // If there are more than `event_topics`, then trap.
        if topics.len() > ctx.ext.schedule().limits.event_topics as usize {
            return Err(Error::<E::T>::TooManyTopics.into())
        }

        let event_data = ctx.read_sandbox_memory(memory, data_ptr, data_len)?;

        ctx.ext.deposit_event(topics, event_data);

        Ok(())
    }

    /// Stores the current block number of the current contract into the supplied buffer.
    ///
    /// The value is stored to linear memory at the address pointed to by `out_ptr`.
    /// `out_len_ptr` must point to a u32 value that describes the available space at
    /// `out_ptr`. This call overwrites it with the size of the value. If the available
    /// space at `out_ptr` is less than the size of the value a trap is triggered.
    #[prefixed_alias]
    fn block_number(ctx: _, memory: _, out_ptr: u32, out_len_ptr: u32) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::BlockNumber)?;
        Ok(ctx.write_sandbox_output(
            memory,
            out_ptr,
            out_len_ptr,
            &ctx.ext.block_number().encode(),
            false,
            already_charged,
        )?)
    }

    /// Computes the SHA2 256-bit hash on the given input buffer.
    ///
    /// Returns the result directly into the given output buffer.
    ///
    /// # Note
    ///
    /// - The `input` and `output` buffer may overlap.
    /// - The output buffer is expected to hold at least 32 bytes (256 bits).
    /// - It is the callers responsibility to provide an output buffer that is large enough to hold
    ///   the expected amount of bytes returned by the chosen hash function.
    ///
    /// # Parameters
    ///
    /// - `input_ptr`: the pointer into the linear memory where the input data is placed.
    /// - `input_len`: the length of the input data in bytes.
    /// - `output_ptr`: the pointer into the linear memory where the output data is placed. The
    ///   function will write the result directly into this buffer.
    #[prefixed_alias]
    fn hash_sha2_256(
        ctx: _,
        memory: _,
        input_ptr: u32,
        input_len: u32,
        output_ptr: u32,
    ) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::HashSha256(input_len))?;
        Ok(ctx.compute_hash_on_intermediate_buffer(
            memory, sha2_256, input_ptr, input_len, output_ptr,
        )?)
    }

    /// Computes the KECCAK 256-bit hash on the given input buffer.
    ///
    /// Returns the result directly into the given output buffer.
    ///
    /// # Note
    ///
    /// - The `input` and `output` buffer may overlap.
    /// - The output buffer is expected to hold at least 32 bytes (256 bits).
    /// - It is the callers responsibility to provide an output buffer that is large enough to hold
    ///   the expected amount of bytes returned by the chosen hash function.
    ///
    /// # Parameters
    ///
    /// - `input_ptr`: the pointer into the linear memory where the input data is placed.
    /// - `input_len`: the length of the input data in bytes.
    /// - `output_ptr`: the pointer into the linear memory where the output data is placed. The
    ///   function will write the result directly into this buffer.
    #[prefixed_alias]
    fn hash_keccak_256(
        ctx: _,
        memory: _,
        input_ptr: u32,
        input_len: u32,
        output_ptr: u32,
    ) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::HashKeccak256(input_len))?;
        Ok(ctx.compute_hash_on_intermediate_buffer(
            memory, keccak_256, input_ptr, input_len, output_ptr,
        )?)
    }

    /// Computes the BLAKE2 256-bit hash on the given input buffer.
    ///
    /// Returns the result directly into the given output buffer.
    ///
    /// # Note
    ///
    /// - The `input` and `output` buffer may overlap.
    /// - The output buffer is expected to hold at least 32 bytes (256 bits).
    /// - It is the callers responsibility to provide an output buffer that is large enough to hold
    ///   the expected amount of bytes returned by the chosen hash function.
    ///
    /// # Parameters
    ///
    /// - `input_ptr`: the pointer into the linear memory where the input data is placed.
    /// - `input_len`: the length of the input data in bytes.
    /// - `output_ptr`: the pointer into the linear memory where the output data is placed. The
    ///   function will write the result directly into this buffer.
    #[prefixed_alias]
    fn hash_blake2_256(
        ctx: _,
        memory: _,
        input_ptr: u32,
        input_len: u32,
        output_ptr: u32,
    ) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::HashBlake256(input_len))?;
        Ok(ctx.compute_hash_on_intermediate_buffer(
            memory, blake2_256, input_ptr, input_len, output_ptr,
        )?)
    }

    /// Computes the BLAKE2 128-bit hash on the given input buffer.
    ///
    /// Returns the result directly into the given output buffer.
    ///
    /// # Note
    ///
    /// - The `input` and `output` buffer may overlap.
    /// - The output buffer is expected to hold at least 16 bytes (128 bits).
    /// - It is the callers responsibility to provide an output buffer that is large enough to hold
    ///   the expected amount of bytes returned by the chosen hash function.
    ///
    /// # Parameters
    ///
    /// - `input_ptr`: the pointer into the linear memory where the input data is placed.
    /// - `input_len`: the length of the input data in bytes.
    /// - `output_ptr`: the pointer into the linear memory where the output data is placed. The
    ///   function will write the result directly into this buffer.
    #[prefixed_alias]
    fn hash_blake2_128(
        ctx: _,
        memory: _,
        input_ptr: u32,
        input_len: u32,
        output_ptr: u32,
    ) -> Result<(), TrapReason> {
        ctx.charge_gas(RuntimeCosts::HashBlake128(input_len))?;
        Ok(ctx.compute_hash_on_intermediate_buffer(
            memory, blake2_128, input_ptr, input_len, output_ptr,
        )?)
    }

    /// Call into the chain extension provided by the chain if any.
    ///
    /// Handling of the input values is up to the specific chain extension and so is the
    /// return value. The extension can decide to use the inputs as primitive inputs or as
    /// in/out arguments by interpreting them as pointers. Any caller of this function
    /// must therefore coordinate with the chain that it targets.
    ///
    /// # Note
    ///
    /// If no chain extension exists the contract will trap with the `NoChainExtension`
    /// module error.
    #[prefixed_alias]
    fn call_chain_extension(
        ctx: _,
        memory: _,
        id: u32,
        input_ptr: u32,
        input_len: u32,
        output_ptr: u32,
        output_len_ptr: u32,
    ) -> Result<u32, TrapReason> {
        use crate::chain_extension::{ChainExtension, Environment, RetVal};
        if !<E::T as Config>::ChainExtension::enabled() {
            return Err(Error::<E::T>::NoChainExtension.into())
        }
        let mut chain_extension = ctx.chain_extension.take().expect(
			"Constructor initializes with `Some`. This is the only place where it is set to `None`.\
			It is always reset to `Some` afterwards. qed"
		);
        let env = Environment::new(
            ctx,
            memory,
            id,
            input_ptr,
            input_len,
            output_ptr,
            output_len_ptr,
        );
        let ret = match chain_extension.call(env)? {
            RetVal::Converging(val) => Ok(val),
            RetVal::Diverging { flags, data } => Err(TrapReason::Return(ReturnData {
                flags: flags.bits(),
                data,
            })),
        };
        ctx.chain_extension = Some(chain_extension);
        ret
    }

    /// Emit a custom debug message.
    ///
    /// No newlines are added to the supplied message.
    /// Specifying invalid UTF-8 just drops the message with no trap.
    ///
    /// This is a no-op if debug message recording is disabled which is always the case
    /// when the code is executing on-chain. The message is interpreted as UTF-8 and
    /// appended to the debug buffer which is then supplied to the calling RPC client.
    ///
    /// # Note
    ///
    /// Even though no action is taken when debug message recording is disabled there is still
    /// a non trivial overhead (and weight cost) associated with calling this function. Contract
    /// languages should remove calls to this function (either at runtime or compile time) when
    /// not being executed as an RPC. For example, they could allow users to disable logging
    /// through compile time flags (cargo features) for on-chain deployment. Additionally, the
    /// return value of this function can be cached in order to prevent further calls at runtime.
    #[prefixed_alias]
    fn debug_message(
        ctx: _,
        memory: _,
        str_ptr: u32,
        str_len: u32,
    ) -> Result<ReturnCode, TrapReason> {
        let str_len = str_len.min(DebugBufferVec::<E::T>::bound() as u32);
        ctx.charge_gas(RuntimeCosts::DebugMessage(str_len))?;
        if ctx.ext.append_debug_buffer("") {
            let data = ctx.read_sandbox_memory(memory, str_ptr, str_len)?;
            if let Ok(msg) = core::str::from_utf8(&data) {
                ctx.ext.append_debug_buffer(msg);
            }
        }
        Ok(ReturnCode::Success)
    }

    /// Call some dispatchable of the runtime.
    ///
    /// This function decodes the passed in data as the overarching `Call` type of the
    /// runtime and dispatches it. The weight as specified in the runtime is charged
    /// from the gas meter. Any weight refunds made by the dispatchable are considered.
    ///
    /// The filter specified by `Config::CallFilter` is attached to the origin of
    /// the dispatched call.
    ///
    /// # Parameters
    ///
    /// - `call_ptr`: the pointer into the linear memory where the input data is placed.
    /// - `call_len`: the length of the input data in bytes.
    ///
    /// # Return Value
    ///
    /// Returns `ReturnCode::Success` when the dispatchable was successfully executed and
    /// returned `Ok`. When the dispatchable was exeuted but returned an error
    /// `ReturnCode::CallRuntimeFailed` is returned. The full error is not
    /// provided because it is not guaranteed to be stable.
    ///
    /// # Comparison with `ChainExtension`
    ///
    /// Just as a chain extension this API allows the runtime to extend the functionality
    /// of contracts. While making use of this function is generally easier it cannot be
    /// used in all cases. Consider writing a chain extension if you need to do perform
    /// one of the following tasks:
    ///
    /// - Return data.
    /// - Provide functionality **exclusively** to contracts.
    /// - Provide custom weights.
    /// - Avoid the need to keep the `Call` data structure stable.
    fn call_runtime(
        ctx: _,
        memory: _,
        call_ptr: u32,
        call_len: u32,
    ) -> Result<ReturnCode, TrapReason> {
        use frame_support::dispatch::{extract_actual_weight, GetDispatchInfo};
        ctx.charge_gas(RuntimeCosts::CopyFromContract(call_len))?;
        let call: <E::T as Config>::RuntimeCall =
            ctx.read_sandbox_memory_as_unbounded(memory, call_ptr, call_len)?;
        let dispatch_info = call.get_dispatch_info();
        let charged = ctx.charge_gas(RuntimeCosts::CallRuntime(dispatch_info.weight))?;
        let result = ctx.ext.call_runtime(call);
        let actual_weight = extract_actual_weight(&result, &dispatch_info);
        ctx.adjust_gas(charged, RuntimeCosts::CallRuntime(actual_weight));
        match result {
            Ok(_) => Ok(ReturnCode::Success),
            Err(e) => {
                if ctx.ext.append_debug_buffer("") {
                    ctx.ext
                        .append_debug_buffer("seal0::call_runtime failed with: ");
                    ctx.ext.append_debug_buffer(e.into());
                };
                Ok(ReturnCode::CallRuntimeFailed)
            },
        }
    }

    /// Recovers the ECDSA public key from the given message hash and signature.
    ///
    /// Writes the public key into the given output buffer.
    /// Assumes the secp256k1 curve.
    ///
    /// # Parameters
    ///
    /// - `signature_ptr`: the pointer into the linear memory where the signature is placed. Should
    ///   be decodable as a 65 bytes. Traps otherwise.
    /// - `message_hash_ptr`: the pointer into the linear memory where the message hash is placed.
    ///   Should be decodable as a 32 bytes. Traps otherwise.
    /// - `output_ptr`: the pointer into the linear memory where the output data is placed. The
    ///   buffer should be 33 bytes. The function will write the result directly into this buffer.
    ///
    /// # Errors
    ///
    /// - `ReturnCode::EcdsaRecoverFailed`
    #[prefixed_alias]
    fn ecdsa_recover(
        ctx: _,
        memory: _,
        signature_ptr: u32,
        message_hash_ptr: u32,
        output_ptr: u32,
    ) -> Result<ReturnCode, TrapReason> {
        ctx.charge_gas(RuntimeCosts::EcdsaRecovery)?;

        let mut signature: [u8; 65] = [0; 65];
        ctx.read_sandbox_memory_into_buf(memory, signature_ptr, &mut signature)?;
        let mut message_hash: [u8; 32] = [0; 32];
        ctx.read_sandbox_memory_into_buf(memory, message_hash_ptr, &mut message_hash)?;

        let result = ctx.ext.ecdsa_recover(&signature, &message_hash);

        match result {
            Ok(pub_key) => {
                // Write the recovered compressed ecdsa public key back into the sandboxed output
                // buffer.
                ctx.write_sandbox_memory(memory, output_ptr, pub_key.as_ref())?;

                Ok(ReturnCode::Success)
            },
            Err(_) => Ok(ReturnCode::EcdsaRecoverFailed),
        }
    }

    /// Verify a sr25519 signature
    ///
    /// # Parameters
    ///
    /// - `signature_ptr`: the pointer into the linear memory where the signature is placed. Should
    ///   be a value of 64 bytes.
    /// - `pub_key_ptr`: the pointer into the linear memory where the public key is placed. Should
    ///   be a value of 32 bytes.
    /// - `message_len`: the length of the message payload.
    /// - `message_ptr`: the pointer into the linear memory where the message is placed.
    ///
    /// # Errors
    ///
    /// - `ReturnCode::Sr25519VerifyFailed
    #[unstable]
    fn sr25519_verify(
        ctx: _,
        memory: _,
        signature_ptr: u32,
        pub_key_ptr: u32,
        message_len: u32,
        message_ptr: u32,
    ) -> Result<ReturnCode, TrapReason> {
        ctx.charge_gas(RuntimeCosts::Sr25519Verify(message_len))?;

        let mut signature: [u8; 64] = [0; 64];
        ctx.read_sandbox_memory_into_buf(memory, signature_ptr, &mut signature)?;

        let mut pub_key: [u8; 32] = [0; 32];
        ctx.read_sandbox_memory_into_buf(memory, pub_key_ptr, &mut pub_key)?;

        let message: Vec<u8> = ctx.read_sandbox_memory(memory, message_ptr, message_len)?;

        if ctx.ext.sr25519_verify(&signature, &message, &pub_key) {
            Ok(ReturnCode::Success)
        } else {
            Ok(ReturnCode::Sr25519VerifyFailed)
        }
    }

    /// Replace the contract code at the specified address with new code.
    ///
    /// # Note
    ///
    /// There are a couple of important considerations which must be taken into account when
    /// using this API:
    ///
    /// 1. The storage at the code address will remain untouched. This means that contract
    /// developers must ensure that the storage layout of the new code is compatible with that of
    /// the old code.
    ///
    /// 2. Contracts using this API can't be assumed as having deterministic addresses. Said another
    /// way, when using this API you lose the guarantee that an address always identifies a specific
    /// code hash.
    ///
    /// 3. If a contract calls into itself after changing its code the new call would use
    /// the new code. However, if the original caller panics after returning from the sub call it
    /// would revert the changes made by [`set_code_hash()`][`Self::set_code_hash`] and the next
    /// caller would use the old code.
    ///
    /// # Parameters
    ///
    /// - `code_hash_ptr`: A pointer to the buffer that contains the new code hash.
    ///
    /// # Errors
    ///
    /// - `ReturnCode::CodeNotFound`
    #[prefixed_alias]
    fn set_code_hash(ctx: _, memory: _, code_hash_ptr: u32) -> Result<ReturnCode, TrapReason> {
        ctx.charge_gas(RuntimeCosts::SetCodeHash)?;
        let code_hash: CodeHash<<E as Ext>::T> =
            ctx.read_sandbox_memory_as(memory, code_hash_ptr)?;
        match ctx.ext.set_code_hash(code_hash) {
            Err(err) => {
                let code = Runtime::<E>::err_into_return_code(err)?;
                Ok(code)
            },
            Ok(()) => Ok(ReturnCode::Success),
        }
    }

    /// Calculates Ethereum address from the ECDSA compressed public key and stores
    /// it into the supplied buffer.
    ///
    /// # Parameters
    ///
    /// - `key_ptr`: a pointer to the ECDSA compressed public key. Should be decodable as a 33 bytes
    ///   value. Traps otherwise.
    /// - `out_ptr`: the pointer into the linear memory where the output data is placed. The
    ///   function will write the result directly into this buffer.
    ///
    /// The value is stored to linear memory at the address pointed to by `out_ptr`.
    /// If the available space at `out_ptr` is less than the size of the value a trap is triggered.
    ///
    /// # Errors
    ///
    /// - `ReturnCode::EcdsaRecoverFailed`
    #[prefixed_alias]
    fn ecdsa_to_eth_address(
        ctx: _,
        memory: _,
        key_ptr: u32,
        out_ptr: u32,
    ) -> Result<ReturnCode, TrapReason> {
        ctx.charge_gas(RuntimeCosts::EcdsaToEthAddress)?;
        let mut compressed_key: [u8; 33] = [0; 33];
        ctx.read_sandbox_memory_into_buf(memory, key_ptr, &mut compressed_key)?;
        let result = ctx.ext.ecdsa_to_eth_address(&compressed_key);
        match result {
            Ok(eth_address) => {
                ctx.write_sandbox_memory(memory, out_ptr, eth_address.as_ref())?;
                Ok(ReturnCode::Success)
            },
            Err(_) => Ok(ReturnCode::EcdsaRecoverFailed),
        }
    }

    /// Returns the number of times the currently executing contract exists on the call stack in
    /// addition to the calling instance.
    ///
    /// # Return Value
    ///
    /// Returns `0` when there is no reentrancy.
    #[unstable]
    fn reentrance_count(ctx: _, memory: _) -> Result<u32, TrapReason> {
        ctx.charge_gas(RuntimeCosts::ReentrantCount)?;
        Ok(ctx.ext.reentrance_count())
    }

    /// Returns the number of times specified contract exists on the call stack. Delegated calls are
    /// not counted as separate calls.
    ///
    /// # Parameters
    ///
    /// - `account_ptr`: a pointer to the contract address.
    ///
    /// # Return Value
    ///
    /// Returns `0` when the contract does not exist on the call stack.
    #[unstable]
    fn account_reentrance_count(ctx: _, memory: _, account_ptr: u32) -> Result<u32, TrapReason> {
        ctx.charge_gas(RuntimeCosts::AccountEntranceCount)?;
        let account_id: <<E as Ext>::T as frame_system::Config>::AccountId =
            ctx.read_sandbox_memory_as(memory, account_ptr)?;
        Ok(ctx.ext.account_reentrance_count(&account_id))
    }

    /// Returns a nonce that is unique per contract instantiation.
    ///
    /// The nonce is incremented for each successful contract instantiation. This is a
    /// sensible default salt for contract instantiations.
    fn instantiation_nonce(ctx: _, _memory: _) -> Result<u64, TrapReason> {
        ctx.charge_gas(RuntimeCosts::InstantationNonce)?;
        Ok(ctx.ext.nonce())
    }
}