1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
// This file is part of Substrate.
// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! This module contains functions to meter the storage deposit.
use crate::{
storage::{ContractInfo, DepositAccount},
BalanceOf, Config, Error, Inspect, Origin, Pallet, System,
};
use codec::Encode;
use frame_support::{
dispatch::{fmt::Debug, DispatchError},
ensure,
traits::{
tokens::{Fortitude::Polite, Preservation::Protect, WithdrawConsequence},
Currency, ExistenceRequirement, Get,
},
DefaultNoBound, RuntimeDebugNoBound,
};
use pallet_contracts_primitives::StorageDeposit as Deposit;
use sp_runtime::{
traits::{Saturating, Zero},
FixedPointNumber, FixedU128,
};
use sp_std::{marker::PhantomData, vec::Vec};
/// Deposit that uses the native currency's balance type.
pub type DepositOf<T> = Deposit<BalanceOf<T>>;
/// A production root storage meter that actually charges from its origin.
pub type Meter<T> = RawMeter<T, ReservingExt, Root>;
/// A production nested storage meter that actually charges from its origin.
pub type NestedMeter<T> = RawMeter<T, ReservingExt, Nested>;
/// A production storage meter that actually charges from its origin.
///
/// This can be used where we want to be generic over the state (Root vs. Nested).
pub type GenericMeter<T, S> = RawMeter<T, ReservingExt, S>;
/// A trait that allows to decouple the metering from the charging of balance.
///
/// This mostly exists for testing so that the charging can be mocked.
pub trait Ext<T: Config> {
/// This checks whether `origin` is able to afford the storage deposit limit.
///
/// It is necessary to do this check beforehand so that the charge won't fail later on.
///
/// `origin`: The origin of the call stack from which is responsible for putting down a deposit.
/// `limit`: The limit with which the meter was constructed.
/// `min_leftover`: How much `free_balance` in addition to the existential deposit (ed) should
/// be left inside the `origin` account.
///
/// Returns the limit that should be used by the meter. If origin can't afford the `limit`
/// it returns `Err`.
fn check_limit(
origin: &T::AccountId,
limit: Option<BalanceOf<T>>,
min_leftover: BalanceOf<T>,
) -> Result<BalanceOf<T>, DispatchError>;
/// This is called to inform the implementer that some balance should be charged due to
/// some interaction of the `origin` with a `contract`.
///
/// The balance transfer can either flow from `origin` to `deposit_account` or the other way
/// around depending on whether `amount` constitutes a `Charge` or a `Refund`.
/// It is guaranteed that this succeeds because no more balance than returned by
/// `check_limit` is ever charged. This is why this function is infallible.
/// `terminated` designates whether the `contract` was terminated.
fn charge(
origin: &T::AccountId,
deposit_account: &DepositAccount<T>,
amount: &DepositOf<T>,
terminated: bool,
) -> Result<(), DispatchError>;
}
/// This [`Ext`] is used for actual on-chain execution when balance needs to be charged.
///
/// It uses [`frame_support::traits::ReservableCurrency`] in order to do accomplish the reserves.
pub enum ReservingExt {}
/// Used to implement a type state pattern for the meter.
///
/// It is sealed and cannot be implemented outside of this module.
pub trait State: private::Sealed {}
/// State parameter that constitutes a meter that is in its root state.
#[derive(Default, Debug)]
pub struct Root;
/// State parameter that constitutes a meter that is in its nested state.
/// Its value indicates whether the nested meter has its own limit.
#[derive(DefaultNoBound, RuntimeDebugNoBound)]
pub enum Nested {
#[default]
DerivedLimit,
OwnLimit,
}
impl State for Root {}
impl State for Nested {}
/// A type that allows the metering of consumed or freed storage of a single contract call stack.
#[derive(DefaultNoBound, RuntimeDebugNoBound)]
pub struct RawMeter<T: Config, E, S: State + Default + Debug> {
/// The limit of how much balance this meter is allowed to consume.
limit: BalanceOf<T>,
/// The amount of balance that was used in this meter and all of its already absorbed children.
total_deposit: DepositOf<T>,
/// The amount of storage changes that were recorded in this meter alone.
own_contribution: Contribution<T>,
/// List of charges that should be applied at the end of a contract stack execution.
///
/// We only have one charge per contract hence the size of this vector is
/// limited by the maximum call depth.
charges: Vec<Charge<T>>,
/// We store the nested state to determine if it has a special limit for sub-call.
nested: S,
/// Type parameter only used in impls.
_phantom: PhantomData<E>,
}
/// This type is used to describe a storage change when charging from the meter.
#[derive(Default, RuntimeDebugNoBound)]
pub struct Diff {
/// How many bytes were added to storage.
pub bytes_added: u32,
/// How many bytes were removed from storage.
pub bytes_removed: u32,
/// How many storage items were added to storage.
pub items_added: u32,
/// How many storage items were removed from storage.
pub items_removed: u32,
}
impl Diff {
/// Calculate how much of a charge or refund results from applying the diff and store it
/// in the passed `info` if any.
///
/// # Note
///
/// In case `None` is passed for `info` only charges are calculated. This is because refunds
/// are calculated pro rata of the existing storage within a contract and hence need extract
/// this information from the passed `info`.
pub fn update_contract<T: Config>(&self, info: Option<&mut ContractInfo<T>>) -> DepositOf<T> {
let per_byte = T::DepositPerByte::get();
let per_item = T::DepositPerItem::get();
let bytes_added = self.bytes_added.saturating_sub(self.bytes_removed);
let items_added = self.items_added.saturating_sub(self.items_removed);
let mut bytes_deposit = Deposit::Charge(per_byte.saturating_mul((bytes_added).into()));
let mut items_deposit = Deposit::Charge(per_item.saturating_mul((items_added).into()));
// Without any contract info we can only calculate diffs which add storage
let info = if let Some(info) = info {
info
} else {
debug_assert_eq!(self.bytes_removed, 0);
debug_assert_eq!(self.items_removed, 0);
return bytes_deposit.saturating_add(&items_deposit)
};
// Refunds are calculated pro rata based on the accumulated storage within the contract
let bytes_removed = self.bytes_removed.saturating_sub(self.bytes_added);
let items_removed = self.items_removed.saturating_sub(self.items_added);
let ratio = FixedU128::checked_from_rational(bytes_removed, info.storage_bytes)
.unwrap_or_default()
.min(FixedU128::from_u32(1));
bytes_deposit = bytes_deposit.saturating_add(&Deposit::Refund(
ratio.saturating_mul_int(info.storage_byte_deposit),
));
let ratio = FixedU128::checked_from_rational(items_removed, info.storage_items)
.unwrap_or_default()
.min(FixedU128::from_u32(1));
items_deposit = items_deposit.saturating_add(&Deposit::Refund(
ratio.saturating_mul_int(info.storage_item_deposit),
));
// We need to update the contract info structure with the new deposits
info.storage_bytes = info
.storage_bytes
.saturating_add(bytes_added)
.saturating_sub(bytes_removed);
info.storage_items = info
.storage_items
.saturating_add(items_added)
.saturating_sub(items_removed);
match &bytes_deposit {
Deposit::Charge(amount) =>
info.storage_byte_deposit = info.storage_byte_deposit.saturating_add(*amount),
Deposit::Refund(amount) =>
info.storage_byte_deposit = info.storage_byte_deposit.saturating_sub(*amount),
}
match &items_deposit {
Deposit::Charge(amount) =>
info.storage_item_deposit = info.storage_item_deposit.saturating_add(*amount),
Deposit::Refund(amount) =>
info.storage_item_deposit = info.storage_item_deposit.saturating_sub(*amount),
}
bytes_deposit.saturating_add(&items_deposit)
}
}
impl Diff {
fn saturating_add(&self, rhs: &Self) -> Self {
Self {
bytes_added: self.bytes_added.saturating_add(rhs.bytes_added),
bytes_removed: self.bytes_removed.saturating_add(rhs.bytes_removed),
items_added: self.items_added.saturating_add(rhs.items_added),
items_removed: self.items_removed.saturating_add(rhs.items_removed),
}
}
}
/// Records information to charge or refund a plain account.
///
/// All the charges are deferred to the end of a whole call stack. Reason is that by doing
/// this we can do all the refunds before doing any charge. This way a plain account can use
/// more deposit than it has balance as along as it is covered by a refund. This
/// essentially makes the order of storage changes irrelevant with regard to the deposit system.
/// The only exception is when a special (tougher) deposit limit is specified for a cross-contract
/// call. In that case the limit is enforced once the call is returned, rolling it back if
/// exhausted.
#[derive(RuntimeDebugNoBound, Clone)]
struct Charge<T: Config> {
deposit_account: DepositAccount<T>,
amount: DepositOf<T>,
terminated: bool,
}
/// Records the storage changes of a storage meter.
#[derive(RuntimeDebugNoBound)]
enum Contribution<T: Config> {
/// The contract the meter belongs to is alive and accumulates changes using a [`Diff`].
Alive(Diff),
/// The meter was checked against its limit using [`RawMeter::enforce_limit`] at the end of
/// its execution. In this process the [`Diff`] was converted into a [`Deposit`].
Checked(DepositOf<T>),
/// The contract was terminated. In this process the [`Diff`] was converted into a [`Deposit`]
/// in order to calculate the refund.
Terminated(DepositOf<T>),
}
impl<T: Config> Contribution<T> {
/// See [`Diff::update_contract`].
fn update_contract(&self, info: Option<&mut ContractInfo<T>>) -> DepositOf<T> {
match self {
Self::Alive(diff) => diff.update_contract::<T>(info),
Self::Terminated(deposit) | Self::Checked(deposit) => deposit.clone(),
}
}
}
impl<T: Config> Default for Contribution<T> {
fn default() -> Self {
Self::Alive(Default::default())
}
}
/// Functions that apply to all states.
impl<T, E, S> RawMeter<T, E, S>
where
T: Config,
E: Ext<T>,
S: State + Default + Debug,
{
/// Create a new child that has its `limit`.
/// Passing `0` as the limit is interpreted as to take whatever is remaining from its parent.
///
/// This is called whenever a new subcall is initiated in order to track the storage
/// usage for this sub call separately. This is necessary because we want to exchange balance
/// with the current contract we are interacting with.
pub fn nested(&self, limit: BalanceOf<T>) -> RawMeter<T, E, Nested> {
debug_assert!(self.is_alive());
// If a special limit is specified higher than it is available,
// we want to enforce the lesser limit to the nested meter, to fail in the sub-call.
let limit = self.available().min(limit);
if limit.is_zero() {
RawMeter {
limit: self.available(),
..Default::default()
}
} else {
RawMeter {
limit,
nested: Nested::OwnLimit,
..Default::default()
}
}
}
/// Absorb a child that was spawned to handle a sub call.
///
/// This should be called whenever a sub call comes to its end and it is **not** reverted.
/// This does the actual balance transfer from/to `origin` and `deposit_account` based on the
/// overall storage consumption of the call. It also updates the supplied contract info.
///
/// In case a contract reverted the child meter should just be dropped in order to revert
/// any changes it recorded.
///
/// # Parameters
///
/// - `absorbed`: The child storage meter that should be absorbed.
/// - `origin`: The origin that spawned the original root meter.
/// - `deposit_account`: The contract's deposit account that this sub call belongs to.
/// - `info`: The info of the contract in question. `None` if the contract was terminated.
pub fn absorb(
&mut self,
absorbed: RawMeter<T, E, Nested>,
deposit_account: DepositAccount<T>,
info: Option<&mut ContractInfo<T>>,
) {
let own_deposit = absorbed.own_contribution.update_contract(info);
self.total_deposit = self
.total_deposit
.saturating_add(&absorbed.total_deposit)
.saturating_add(&own_deposit);
self.charges.extend_from_slice(&absorbed.charges);
if !own_deposit.is_zero() {
self.charges.push(Charge {
deposit_account,
amount: own_deposit,
terminated: absorbed.is_terminated(),
});
}
}
/// The amount of balance that is still available from the original `limit`.
fn available(&self) -> BalanceOf<T> {
self.total_deposit.available(&self.limit)
}
/// True if the contract is alive.
fn is_alive(&self) -> bool {
matches!(self.own_contribution, Contribution::Alive(_))
}
/// True if the contract is terminated.
fn is_terminated(&self) -> bool {
matches!(self.own_contribution, Contribution::Terminated(_))
}
}
/// Functions that only apply to the root state.
impl<T, E> RawMeter<T, E, Root>
where
T: Config,
E: Ext<T>,
{
/// Create new storage meter for the specified `origin` and `limit`.
///
/// This tries to [`Ext::check_limit`] on `origin` and fails if this is not possible.
pub fn new(
origin: &Origin<T>,
limit: Option<BalanceOf<T>>,
min_leftover: BalanceOf<T>,
) -> Result<Self, DispatchError> {
// Check the limit only if the origin is not root.
match origin {
Origin::Root => Ok(Self {
limit: limit.unwrap_or(T::DefaultDepositLimit::get()),
..Default::default()
}),
Origin::Signed(o) => {
let limit = E::check_limit(o, limit, min_leftover)?;
Ok(Self {
limit,
..Default::default()
})
},
}
}
/// The total amount of deposit that should change hands as result of the execution
/// that this meter was passed into. This will also perform all the charges accumulated
/// in the whole contract stack.
///
/// This drops the root meter in order to make sure it is only called when the whole
/// execution did finish.
pub fn try_into_deposit(self, origin: &Origin<T>) -> Result<DepositOf<T>, DispatchError> {
// Only refund or charge deposit if the origin is not root.
let origin = match origin {
Origin::Root => return Ok(Deposit::Charge(Zero::zero())),
Origin::Signed(o) => o,
};
for charge in self
.charges
.iter()
.filter(|c| matches!(c.amount, Deposit::Refund(_)))
{
E::charge(
origin,
&charge.deposit_account,
&charge.amount,
charge.terminated,
)?;
}
for charge in self
.charges
.iter()
.filter(|c| matches!(c.amount, Deposit::Charge(_)))
{
E::charge(
origin,
&charge.deposit_account,
&charge.amount,
charge.terminated,
)?;
}
Ok(self.total_deposit)
}
}
/// Functions that only apply to the nested state.
impl<T, E> RawMeter<T, E, Nested>
where
T: Config,
E: Ext<T>,
{
/// Charge `diff` from the meter.
pub fn charge(&mut self, diff: &Diff) {
match &mut self.own_contribution {
Contribution::Alive(own) => *own = own.saturating_add(diff),
_ => panic!("Charge is never called after termination; qed"),
};
}
/// Charge from `origin` a storage deposit for contract instantiation.
///
/// This immediately transfers the balance in order to create the account.
pub fn charge_instantiate(
&mut self,
origin: &T::AccountId,
contract: &T::AccountId,
info: &mut ContractInfo<T>,
) -> Result<DepositOf<T>, DispatchError> {
debug_assert!(self.is_alive());
let ed = Pallet::<T>::min_balance();
let mut deposit = Diff {
bytes_added: info.encoded_size() as u32,
items_added: 1,
..Default::default()
}
.update_contract::<T>(None);
// Instantiate needs to transfer at least the minimum balance in order to pull the
// deposit account into existence.
// We also add another `ed` here which goes to the contract's own account into existence.
deposit = deposit
.max(Deposit::Charge(ed))
.saturating_add(&Deposit::Charge(ed));
if deposit.charge_or_zero() > self.limit {
return Err(<Error<T>>::StorageDepositLimitExhausted.into())
}
// We do not increase `own_contribution` because this will be charged later when the
// contract execution does conclude and hence would lead to a double charge.
self.total_deposit = deposit.clone();
info.storage_base_deposit = deposit.charge_or_zero();
// Normally, deposit charges are deferred to be able to coalesce them with refunds.
// However, we need to charge immediately so that the account is created before
// charges possibly below the ed are collected and fail.
E::charge(
origin,
info.deposit_account(),
&deposit.saturating_sub(&Deposit::Charge(ed)),
false,
)?;
System::<T>::inc_consumers(info.deposit_account())?;
// We also need to make sure that the contract's account itself exists.
T::Currency::transfer(origin, contract, ed, ExistenceRequirement::KeepAlive)?;
System::<T>::inc_consumers(contract)?;
Ok(deposit)
}
/// Call to tell the meter that the currently executing contract was executed.
///
/// This will manipulate the meter so that all storage deposit accumulated in
/// `contract_info` will be refunded to the `origin` of the meter.
pub fn terminate(&mut self, info: &ContractInfo<T>) {
debug_assert!(self.is_alive());
self.own_contribution = Contribution::Terminated(Deposit::Refund(info.total_deposit()));
}
/// [`Self::charge`] does not enforce the storage limit since we want to do this check as late
/// as possible to allow later refunds to offset earlier charges.
///
/// # Note
///
/// We normally need to call this **once** for every call stack and not for every cross contract
/// call. However, if a dedicated limit is specified for a sub-call, this needs to be called
/// once the sub-call has returned. For this, the [`Self::enforce_subcall_limit`] wrapper is
/// used.
pub fn enforce_limit(
&mut self,
info: Option<&mut ContractInfo<T>>,
) -> Result<(), DispatchError> {
let deposit = self.own_contribution.update_contract(info);
let total_deposit = self.total_deposit.saturating_add(&deposit);
// We don't want to override a `Terminated` with a `Checked`.
if self.is_alive() {
self.own_contribution = Contribution::Checked(deposit);
}
if let Deposit::Charge(amount) = total_deposit {
if amount > self.limit {
return Err(<Error<T>>::StorageDepositLimitExhausted.into())
}
}
Ok(())
}
/// This is a wrapper around [`Self::enforce_limit`] to use on the exit from a sub-call to
/// enforce its special limit if needed.
pub fn enforce_subcall_limit(
&mut self,
info: Option<&mut ContractInfo<T>>,
) -> Result<(), DispatchError> {
match self.nested {
Nested::OwnLimit => self.enforce_limit(info),
Nested::DerivedLimit => Ok(()),
}
}
}
impl<T: Config> Ext<T> for ReservingExt {
fn check_limit(
origin: &T::AccountId,
limit: Option<BalanceOf<T>>,
min_leftover: BalanceOf<T>,
) -> Result<BalanceOf<T>, DispatchError> {
// We are sending the `min_leftover` and the `min_balance` from the origin
// account as part of a contract call. Hence origin needs to have those left over
// as free balance after accounting for all deposits.
let max = T::Currency::reducible_balance(origin, Protect, Polite)
.saturating_sub(min_leftover)
.saturating_sub(Pallet::<T>::min_balance());
let default = max.min(T::DefaultDepositLimit::get());
let limit = limit.unwrap_or(default);
ensure!(
limit <= max
&& matches!(
T::Currency::can_withdraw(origin, limit),
WithdrawConsequence::Success
),
<Error<T>>::StorageDepositNotEnoughFunds,
);
Ok(limit)
}
fn charge(
origin: &T::AccountId,
deposit_account: &DepositAccount<T>,
amount: &DepositOf<T>,
terminated: bool,
) -> Result<(), DispatchError> {
match amount {
Deposit::Charge(amount) => T::Currency::transfer(
origin,
deposit_account,
*amount,
ExistenceRequirement::KeepAlive,
),
Deposit::Refund(amount) => {
if terminated {
System::<T>::dec_consumers(deposit_account);
}
T::Currency::transfer(
deposit_account,
origin,
*amount,
// We can safely use `AllowDeath` because our own consumer prevents an removal.
ExistenceRequirement::AllowDeath,
)
},
}
}
}
mod private {
pub trait Sealed {}
impl Sealed for super::Root {}
impl Sealed for super::Nested {}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{
exec::AccountIdOf,
tests::{Test, ALICE, BOB, CHARLIE},
};
use frame_support::parameter_types;
use pretty_assertions::assert_eq;
type TestMeter = RawMeter<Test, TestExt, Root>;
parameter_types! {
static TestExtTestValue: TestExt = Default::default();
}
#[derive(Debug, PartialEq, Eq, Clone)]
struct LimitCheck {
origin: AccountIdOf<Test>,
limit: BalanceOf<Test>,
min_leftover: BalanceOf<Test>,
}
#[derive(Debug, PartialEq, Eq, Clone)]
struct Charge {
origin: AccountIdOf<Test>,
contract: DepositAccount<Test>,
amount: DepositOf<Test>,
terminated: bool,
}
#[derive(Default, Debug, PartialEq, Eq, Clone)]
pub struct TestExt {
limit_checks: Vec<LimitCheck>,
charges: Vec<Charge>,
}
impl TestExt {
fn clear(&mut self) {
self.limit_checks.clear();
self.charges.clear();
}
}
impl Ext<Test> for TestExt {
fn check_limit(
origin: &AccountIdOf<Test>,
limit: Option<BalanceOf<Test>>,
min_leftover: BalanceOf<Test>,
) -> Result<BalanceOf<Test>, DispatchError> {
let limit = limit.unwrap_or(42);
TestExtTestValue::mutate(|ext| {
ext.limit_checks.push(LimitCheck {
origin: origin.clone(),
limit,
min_leftover,
})
});
Ok(limit)
}
fn charge(
origin: &AccountIdOf<Test>,
contract: &DepositAccount<Test>,
amount: &DepositOf<Test>,
terminated: bool,
) -> Result<(), DispatchError> {
TestExtTestValue::mutate(|ext| {
ext.charges.push(Charge {
origin: origin.clone(),
contract: contract.clone(),
amount: amount.clone(),
terminated,
})
});
Ok(())
}
}
fn clear_ext() {
TestExtTestValue::mutate(|ext| ext.clear())
}
struct ChargingTestCase {
origin: Origin<Test>,
deposit: DepositOf<Test>,
expected: TestExt,
}
#[derive(Default)]
struct StorageInfo {
bytes: u32,
items: u32,
bytes_deposit: BalanceOf<Test>,
items_deposit: BalanceOf<Test>,
}
fn new_info(info: StorageInfo) -> ContractInfo<Test> {
ContractInfo::<Test> {
trie_id: Default::default(),
deposit_account: DepositAccount([0u8; 32].into()),
code_hash: Default::default(),
storage_bytes: info.bytes,
storage_items: info.items,
storage_byte_deposit: info.bytes_deposit,
storage_item_deposit: info.items_deposit,
storage_base_deposit: Default::default(),
}
}
#[test]
fn new_reserves_balance_works() {
clear_ext();
TestMeter::new(&Origin::from_account_id(ALICE), Some(1_000), 0).unwrap();
assert_eq!(
TestExtTestValue::get(),
TestExt {
limit_checks: vec![LimitCheck {
origin: ALICE,
limit: 1_000,
min_leftover: 0
}],
..Default::default()
}
)
}
#[test]
fn empty_charge_works() {
clear_ext();
let mut meter = TestMeter::new(&Origin::from_account_id(ALICE), Some(1_000), 0).unwrap();
assert_eq!(meter.available(), 1_000);
// an empty charge does not create a `Charge` entry
let mut nested0 = meter.nested(BalanceOf::<Test>::zero());
nested0.charge(&Default::default());
meter.absorb(nested0, DepositAccount(BOB), None);
assert_eq!(
TestExtTestValue::get(),
TestExt {
limit_checks: vec![LimitCheck {
origin: ALICE,
limit: 1_000,
min_leftover: 0
}],
..Default::default()
}
)
}
#[test]
fn charging_works() {
let test_cases = vec![
ChargingTestCase {
origin: Origin::<Test>::from_account_id(ALICE),
deposit: Deposit::Refund(28),
expected: TestExt {
limit_checks: vec![LimitCheck {
origin: ALICE,
limit: 100,
min_leftover: 0,
}],
charges: vec![
Charge {
origin: ALICE,
contract: DepositAccount(CHARLIE),
amount: Deposit::Refund(10),
terminated: false,
},
Charge {
origin: ALICE,
contract: DepositAccount(CHARLIE),
amount: Deposit::Refund(20),
terminated: false,
},
Charge {
origin: ALICE,
contract: DepositAccount(BOB),
amount: Deposit::Charge(2),
terminated: false,
},
],
},
},
ChargingTestCase {
origin: Origin::<Test>::Root,
deposit: Deposit::Charge(0),
expected: TestExt {
limit_checks: vec![],
charges: vec![],
},
},
];
for test_case in test_cases {
clear_ext();
let mut meter = TestMeter::new(&test_case.origin, Some(100), 0).unwrap();
assert_eq!(meter.available(), 100);
let mut nested0_info = new_info(StorageInfo {
bytes: 100,
items: 5,
bytes_deposit: 100,
items_deposit: 10,
});
let mut nested0 = meter.nested(BalanceOf::<Test>::zero());
nested0.charge(&Diff {
bytes_added: 108,
bytes_removed: 5,
items_added: 1,
items_removed: 2,
});
nested0.charge(&Diff {
bytes_removed: 99,
..Default::default()
});
let mut nested1_info = new_info(StorageInfo {
bytes: 100,
items: 10,
bytes_deposit: 100,
items_deposit: 20,
});
let mut nested1 = nested0.nested(BalanceOf::<Test>::zero());
nested1.charge(&Diff {
items_removed: 5,
..Default::default()
});
nested0.absorb(nested1, DepositAccount(CHARLIE), Some(&mut nested1_info));
let mut nested2_info = new_info(StorageInfo {
bytes: 100,
items: 7,
bytes_deposit: 100,
items_deposit: 20,
});
let mut nested2 = nested0.nested(BalanceOf::<Test>::zero());
nested2.charge(&Diff {
items_removed: 7,
..Default::default()
});
nested0.absorb(nested2, DepositAccount(CHARLIE), Some(&mut nested2_info));
nested0.enforce_limit(Some(&mut nested0_info)).unwrap();
meter.absorb(nested0, DepositAccount(BOB), Some(&mut nested0_info));
assert_eq!(
meter.try_into_deposit(&test_case.origin).unwrap(),
test_case.deposit
);
assert_eq!(nested0_info.extra_deposit(), 112);
assert_eq!(nested1_info.extra_deposit(), 110);
assert_eq!(nested2_info.extra_deposit(), 100);
assert_eq!(TestExtTestValue::get(), test_case.expected)
}
}
#[test]
fn termination_works() {
let test_cases = vec![
ChargingTestCase {
origin: Origin::<Test>::from_account_id(ALICE),
deposit: Deposit::Refund(107),
expected: TestExt {
limit_checks: vec![LimitCheck {
origin: ALICE,
limit: 1_000,
min_leftover: 0,
}],
charges: vec![
Charge {
origin: ALICE,
contract: DepositAccount(CHARLIE),
amount: Deposit::Refund(119),
terminated: true,
},
Charge {
origin: ALICE,
contract: DepositAccount(BOB),
amount: Deposit::Charge(12),
terminated: false,
},
],
},
},
ChargingTestCase {
origin: Origin::<Test>::Root,
deposit: Deposit::Charge(0),
expected: TestExt {
limit_checks: vec![],
charges: vec![],
},
},
];
for test_case in test_cases {
clear_ext();
let mut meter = TestMeter::new(&test_case.origin, Some(1_000), 0).unwrap();
assert_eq!(meter.available(), 1_000);
let mut nested0 = meter.nested(BalanceOf::<Test>::zero());
nested0.charge(&Diff {
bytes_added: 5,
bytes_removed: 1,
items_added: 3,
items_removed: 1,
});
nested0.charge(&Diff {
items_added: 2,
..Default::default()
});
let mut nested1_info = new_info(StorageInfo {
bytes: 100,
items: 10,
bytes_deposit: 100,
items_deposit: 20,
});
let mut nested1 = nested0.nested(BalanceOf::<Test>::zero());
nested1.charge(&Diff {
items_removed: 5,
..Default::default()
});
nested1.charge(&Diff {
bytes_added: 20,
..Default::default()
});
nested1.terminate(&nested1_info);
nested0.enforce_limit(Some(&mut nested1_info)).unwrap();
nested0.absorb(nested1, DepositAccount(CHARLIE), None);
meter.absorb(nested0, DepositAccount(BOB), None);
assert_eq!(
meter.try_into_deposit(&test_case.origin).unwrap(),
test_case.deposit
);
assert_eq!(TestExtTestValue::get(), test_case.expected)
}
}
}