1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
// This file is part of Substrate.
// Copyright (C) Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::{exec::ExecError, Config, Error};
use frame_support::{
dispatch::{
DispatchError, DispatchErrorWithPostInfo, DispatchResultWithPostInfo, PostDispatchInfo,
},
weights::Weight,
DefaultNoBound,
};
use sp_core::Get;
use sp_runtime::traits::Zero;
use sp_std::marker::PhantomData;
#[cfg(test)]
use std::{any::Any, fmt::Debug};
#[derive(Debug, PartialEq, Eq)]
pub struct ChargedAmount(Weight);
impl ChargedAmount {
pub fn amount(&self) -> Weight {
self.0
}
}
#[cfg(not(test))]
pub trait TestAuxiliaries {}
#[cfg(not(test))]
impl<T> TestAuxiliaries for T {}
#[cfg(test)]
pub trait TestAuxiliaries: Any + Debug + PartialEq + Eq {}
#[cfg(test)]
impl<T: Any + Debug + PartialEq + Eq> TestAuxiliaries for T {}
/// This trait represents a token that can be used for charging `GasMeter`.
/// There is no other way of charging it.
///
/// Implementing type is expected to be super lightweight hence `Copy` (`Clone` is added
/// for consistency). If inlined there should be no observable difference compared
/// to a hand-written code.
pub trait Token<T: Config>: Copy + Clone + TestAuxiliaries {
/// Return the amount of gas that should be taken by this token.
///
/// This function should be really lightweight and must not fail. It is not
/// expected that implementors will query the storage or do any kinds of heavy operations.
///
/// That said, implementors of this function still can run into overflows
/// while calculating the amount. In this case it is ok to use saturating operations
/// since on overflow they will return `max_value` which should consume all gas.
fn weight(&self) -> Weight;
}
/// A wrapper around a type-erased trait object of what used to be a `Token`.
#[cfg(test)]
pub struct ErasedToken {
pub description: String,
pub token: Box<dyn Any>,
}
#[derive(DefaultNoBound)]
pub struct GasMeter<T: Config> {
gas_limit: Weight,
/// Amount of gas left from initial gas limit. Can reach zero.
gas_left: Weight,
/// Due to `adjust_gas` and `nested` the `gas_left` can temporarily dip below its final value.
gas_left_lowest: Weight,
/// Amount of fuel consumed by the engine from the last host function call.
engine_consumed: u64,
_phantom: PhantomData<T>,
#[cfg(test)]
tokens: Vec<ErasedToken>,
}
impl<T: Config> GasMeter<T> {
pub fn new(gas_limit: Weight) -> Self {
GasMeter {
gas_limit,
gas_left: gas_limit,
gas_left_lowest: gas_limit,
engine_consumed: Default::default(),
_phantom: PhantomData,
#[cfg(test)]
tokens: Vec::new(),
}
}
/// Create a new gas meter by removing gas from the current meter.
///
/// # Note
///
/// Passing `0` as amount is interpreted as "all remaining gas".
pub fn nested(&mut self, amount: Weight) -> Result<Self, DispatchError> {
// NOTE that it is ok to allocate all available gas since it still ensured
// by `charge` that it doesn't reach zero.
let amount = Weight::from_parts(
if amount.ref_time().is_zero() {
self.gas_left().ref_time()
} else {
amount.ref_time()
},
if amount.proof_size().is_zero() {
self.gas_left().proof_size()
} else {
amount.proof_size()
},
);
self.gas_left = self
.gas_left
.checked_sub(&amount)
.ok_or(<Error<T>>::OutOfGas)?;
Ok(GasMeter::new(amount))
}
/// Absorb the remaining gas of a nested meter after we are done using it.
pub fn absorb_nested(&mut self, nested: Self) {
if self.gas_left.ref_time().is_zero() {
// All of the remaining gas was inherited by the nested gas meter. When absorbing
// we can therefore safely inherit the lowest gas that the nested gas meter experienced
// as long as it is lower than the lowest gas that was experienced by the parent.
// We cannot call `self.gas_left_lowest()` here because in the state that this
// code is run the parent gas meter has `0` gas left.
*self.gas_left_lowest.ref_time_mut() = nested
.gas_left_lowest()
.ref_time()
.min(self.gas_left_lowest.ref_time());
} else {
// The nested gas meter was created with a fixed amount that did not consume all of the
// parents (self) gas. The lowest gas that self will experience is when the nested
// gas was pre charged with the fixed amount.
*self.gas_left_lowest.ref_time_mut() = self.gas_left_lowest().ref_time();
}
if self.gas_left.proof_size().is_zero() {
*self.gas_left_lowest.proof_size_mut() = nested
.gas_left_lowest()
.proof_size()
.min(self.gas_left_lowest.proof_size());
} else {
*self.gas_left_lowest.proof_size_mut() = self.gas_left_lowest().proof_size();
}
self.gas_left += nested.gas_left;
}
/// Account for used gas.
///
/// Amount is calculated by the given `token`.
///
/// Returns `OutOfGas` if there is not enough gas or addition of the specified
/// amount of gas has lead to overflow.
///
/// NOTE that amount isn't consumed if there is not enough gas. This is considered
/// safe because we always charge gas before performing any resource-spending action.
#[inline]
pub fn charge<Tok: Token<T>>(&mut self, token: Tok) -> Result<ChargedAmount, DispatchError> {
#[cfg(test)]
{
// Unconditionally add the token to the storage.
let erased_tok = ErasedToken {
description: format!("{:?}", token),
token: Box::new(token),
};
self.tokens.push(erased_tok);
}
let amount = token.weight();
// It is OK to not charge anything on failure because we always charge _before_ we perform
// any action
self.gas_left = self
.gas_left
.checked_sub(&amount)
.ok_or(Error::<T>::OutOfGas)?;
Ok(ChargedAmount(amount))
}
/// Adjust a previously charged amount down to its actual amount.
///
/// This is when a maximum a priori amount was charged and then should be partially
/// refunded to match the actual amount.
pub fn adjust_gas<Tok: Token<T>>(&mut self, charged_amount: ChargedAmount, token: Tok) {
self.gas_left_lowest = self.gas_left_lowest();
let adjustment = charged_amount.0.saturating_sub(token.weight());
self.gas_left = self.gas_left.saturating_add(adjustment).min(self.gas_limit);
}
/// This method is used for gas syncs with the engine.
///
/// Updates internal `engine_comsumed` tracker of engine fuel consumption.
///
/// Charges self with the `ref_time` Weight corresponding to wasmi fuel consumed on the engine
/// side since last sync. Passed value is scaled by multiplying it by the weight of a basic
/// operation, as such an operation in wasmi engine costs 1.
///
/// Returns the updated `gas_left` `Weight` value from the meter.
/// Normally this would never fail, as engine should fail first when out of gas.
pub fn charge_fuel(&mut self, wasmi_fuel_total: u64) -> Result<Weight, DispatchError> {
// Take the part consumed since the last update.
let wasmi_fuel = wasmi_fuel_total.saturating_sub(self.engine_consumed);
if !wasmi_fuel.is_zero() {
self.engine_consumed = wasmi_fuel_total;
let reftime_consumed =
wasmi_fuel.saturating_mul(T::Schedule::get().instruction_weights.base as u64);
let ref_time_left = self
.gas_left
.ref_time()
.checked_sub(reftime_consumed)
.ok_or(Error::<T>::OutOfGas)?;
*(self.gas_left.ref_time_mut()) = ref_time_left;
}
Ok(self.gas_left)
}
/// Returns the amount of gas that is required to run the same call.
///
/// This can be different from `gas_spent` because due to `adjust_gas` the amount of
/// spent gas can temporarily drop and be refunded later.
pub fn gas_required(&self) -> Weight {
self.gas_limit.saturating_sub(self.gas_left_lowest())
}
/// Returns how much gas was spent
pub fn gas_consumed(&self) -> Weight {
self.gas_limit.saturating_sub(self.gas_left)
}
/// Returns how much gas left from the initial budget.
pub fn gas_left(&self) -> Weight {
self.gas_left
}
/// Turn this GasMeter into a DispatchResult that contains the actually used gas.
pub fn into_dispatch_result<R, E>(
self,
result: Result<R, E>,
base_weight: Weight,
) -> DispatchResultWithPostInfo
where
E: Into<ExecError>,
{
let post_info = PostDispatchInfo {
actual_weight: Some(self.gas_consumed().saturating_add(base_weight)),
pays_fee: Default::default(),
};
result
.map(|_| post_info)
.map_err(|e| DispatchErrorWithPostInfo {
post_info,
error: e.into().error,
})
}
fn gas_left_lowest(&self) -> Weight {
self.gas_left_lowest.min(self.gas_left)
}
#[cfg(test)]
pub fn tokens(&self) -> &[ErasedToken] {
&self.tokens
}
}
#[cfg(test)]
mod tests {
use super::{GasMeter, Token, Weight};
use crate::tests::Test;
/// A simple utility macro that helps to match against a
/// list of tokens.
macro_rules! match_tokens {
($tokens_iter:ident,) => {
};
($tokens_iter:ident, $x:expr, $($rest:tt)*) => {
{
let next = ($tokens_iter).next().unwrap();
let pattern = $x;
// Note that we don't specify the type name directly in this macro,
// we only have some expression $x of some type. At the same time, we
// have an iterator of Box<dyn Any> and to downcast we need to specify
// the type which we want downcast to.
//
// So what we do is we assign `_pattern_typed_next_ref` to a variable which has
// the required type.
//
// Then we make `_pattern_typed_next_ref = token.downcast_ref()`. This makes
// rustc infer the type `T` (in `downcast_ref<T: Any>`) to be the same as in $x.
let mut _pattern_typed_next_ref = &pattern;
_pattern_typed_next_ref = match next.token.downcast_ref() {
Some(p) => {
assert_eq!(p, &pattern);
p
}
None => {
panic!("expected type {} got {}", stringify!($x), next.description);
}
};
}
match_tokens!($tokens_iter, $($rest)*);
};
}
/// A trivial token that charges the specified number of gas units.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
struct SimpleToken(u64);
impl Token<Test> for SimpleToken {
fn weight(&self) -> Weight {
Weight::from_parts(self.0, 0)
}
}
#[test]
fn it_works() {
let gas_meter = GasMeter::<Test>::new(Weight::from_parts(50000, 0));
assert_eq!(gas_meter.gas_left(), Weight::from_parts(50000, 0));
}
#[test]
fn tracing() {
let mut gas_meter = GasMeter::<Test>::new(Weight::from_parts(50000, 0));
assert!(gas_meter.charge(SimpleToken(1)).is_ok());
let mut tokens = gas_meter.tokens().iter();
match_tokens!(tokens, SimpleToken(1),);
}
// This test makes sure that nothing can be executed if there is no gas.
#[test]
fn refuse_to_execute_anything_if_zero() {
let mut gas_meter = GasMeter::<Test>::new(Weight::zero());
assert!(gas_meter.charge(SimpleToken(1)).is_err());
}
// Make sure that the gas meter does not charge in case of overcharger
#[test]
fn overcharge_does_not_charge() {
let mut gas_meter = GasMeter::<Test>::new(Weight::from_parts(200, 0));
// The first charge is should lead to OOG.
assert!(gas_meter.charge(SimpleToken(300)).is_err());
// The gas meter should still contain the full 200.
assert!(gas_meter.charge(SimpleToken(200)).is_ok());
}
// Charging the exact amount that the user paid for should be
// possible.
#[test]
fn charge_exact_amount() {
let mut gas_meter = GasMeter::<Test>::new(Weight::from_parts(25, 0));
assert!(gas_meter.charge(SimpleToken(25)).is_ok());
}
}